| Review
	| Rev Diabet Stud,
	2011,
	8(1):51-67 | DOI 10.1900/RDS.2011.8.51 |  Islet Transplantation and Encapsulation: An Update on Recent DevelopmentsVijayaganapathy Vaithilingam, Bernard E. TuchDiabetes Transplant Unit, Prince of Wales Hospital, University of New South Wales, Sidney NSW 2113, Australia; and Australian Foundation for Diabetes Research, Sydney, Australia Address correspondence to: Bernard E. Tuch, e-mail: bernie.tuch@csiro.au
 Manuscript submitted April 14, 2011; resubmitted May 2, 2011; accepted May 5, 2011. Keywords: alginate poly-l-lysine, islet transplantation, pericapsular fibrotic overgrowth, sulphated glucomannan-barium-alginate, encapsulation, microcapsules AbstractHuman islet transplantation can provide good glycemic control in diabetic recipients without exogenous insulin. However, a major factor limiting its application is the recipient's need to adhere to life-long immunosuppression, something that has serious side effects. Microencapsulating human islets is a strategy that should prevent rejection of the grafted tissue without the need for anti-rejection drugs. Despite promising studies in various animal models, the encapsulated human islets so far have not made an impact in the clinical setting. Many non-immunological and immunological factors such as biocompatibility, reduced immunoprotection, hypoxia, pericapsular fibrotic overgrowth, effects of the encapsulation process and post-transplant inflammation hamper the successful application of this promising technology. In this review, strategies are discussed to overcome the above-mentioned factors and to enhance the survival and function of encapsulated insulin-producing cells, whether in islets or surrogate β-cells. Studies at our center show that barium alginate microcapsules are biocompatible in rodents, but not in humans, raising concerns over the use of rodents to predict outcomes. Studies at our center also show that the encapsulation process had little or no effect on the cellular transcriptome of human islets and on their ability to function either in vitro or in vivo. New approaches incorporating further modifications to the microcapsule surface to prevent fibrotic overgrowth are vital, if encapsulated human islets or β-cell surrogates are to become a viable therapy option for type 1 diabetes in humans. Fulltext: 
	 HTML
	,  PDF 
	(567KB) 
 This article has been cited by other articles:
 
  
  
 
 
  
   |   | Xenotransplantation of porcine islet cells as a potential option for the treatment of type 1 diabetes in the future Reichart B, Niemann H, Chavakis T, Denner J, Jaeckel E, Ludwig B, Marckmann G, Schnieke A, Schwinzer R, Seissler J, Tönjes RR, Klymiuk N, Wolf E, Bornstein SR Horm Metab Res 2015. 47(1):31-35 |  |  |  
   |   | Current hydrogel solutions for repairing and regeneration of complex tissues Wang Y, Cai LQ, Nugraha B, Gao Y, Leo HL Curr Med Chem 2014. 21(22):2480-2496 |  |  |  
   |   | Preparation and microscopy examination of alginate-poly-L-lysine-alginate microcapsules Fu HX, Li H, Wu LL, Zhao YZ, Xu YY, Zhu YL, Xue SL, Wang DW, Liu CY, Yang SL, Li XK Drug Dev Ind Pharm 2014. 40(11):1523-1529 |  |  |  
   |   | Current status of islet encapsulation Robles L, Storrs R, Lamb M, Alexander M, Lakey JR Cell Transplant 2014. 23(11):1321-1348 |  |  |  
   |   | Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies An D, Ji Y, Chiu A, Lu YC, Song W, Zhai L, Qi L, Luo D, Ma M Biomaterials 2014. In press |  |  |  
   |   | A review of piscine islet xenotransplantation using wild-type tilapia donors and the production of transgenic tilapia expressing a "humanized" tilapia insulin Wright JR Jr, Yang H, Hyrtsenko O, Xu BY, Yu W, Pohajdak B Xenotransplantation 2014. 21(6):485-495 |  |  |  
   | .gif)  | Young porcine endocrine pancreatic islets cultured in fibrin and alginate gels show improved resistance towards human monocytes Kuehn C, Fülöp T, Lakey JR, Vermette P Pathol Biol (Paris) 2014. 62(6):354-364 |  |  |  
   |   | Tissue engineering approaches to cell-based type 1 diabetes therapy Amer LD, Mahoney MJ, Bryant SJ Tissue Eng Part B Rev 2014. 20(5):455-467 |  |  |  
   |   | Flow chemistry to control the synthesis of nano and microparticles for biomedical applications Hassan N, Oyarzun-Ampuero F, Lara P, Guerrero S, Cabuil V, Abou-Hassan A, Kogan MJ Curr Top Med Chem 2014. 14(5):676-689 |  |  |  
   |   | Whole-organ bioengineering: current tales of modern alchemy Moran EC, Dhal A, Vyas D, Lanas A, Soker S, Baptista PM Transl Res 2014. 163(4):259-267 |  |  |  
   |   | Towards ready-to-use 3-D scaffolds for regenerative medicine: adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate-gelatin cryogel scaffolds Katsen-Globa A, Meiser I, Petrenko YA, Ivanov RV, Lozinsky VI, Zimmermann H, Petrenko AY J Mater Sci Mater Med 2014. 25(3):857-871 |  |  |  
   |   | Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow Meier RP, Seebach JD, Morel P, Mahou R, Borot S, Giovannoni L, Parnaud G, Montanari E, Bosco D, Wandrey C, Berney T, Bühler LH, Muller YD Plos One 2014. 9(3):e91268 |  |  |  
   |   | Oxygen supply to encapsulated therapeutic cells Colton CK Adv Drug Deliv Rev 2014. 67-68:93-110 |  |  |  
   |   | Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution Scharp DW, Marchetti P Adv Drug Deliv Rev 2014. 67-68:35-73 |  |  |  
   |   | Overcoming barriers in clinical islet transplantation: current limitations and future prospects Chhabra P, Sutherland DE, Brayman KL Curr Probl Surg 2014. 51(2):49-86 |  |  |  
   | .gif)  | Cross talk between the extracellular matrix and the immune system in the context of endocrine pancreatic islet transplantation. A review article Kuehn C, Vermette P, Fülöp T Pathol Biol (Paris) 2014. 62(2):67-78 |  |  |  
   |   | Nanoencapsulation of cells within multilayer shells for biomedical applications Granicka LH J Nanosci Nanotechnol 2014. 14(1):705-716 |  |  |  
   |   | Islet and stem cell encapsulation for clinical transplantation Krishnan R, Alexander M, Robles L, Foster CE 3rd, Lakey JR Rev Diabet Stud 2014. 11(1):84-101 |  |  |  
   |   | Immunological and technical considerations in application of alginate-based microencapsulation systems Paredes Juarez GA, Spasojevic M, Faas MM, de Vos P Front Bioeng Biotechnol 2014. 2:26 |  |  |  
   |   | Extracellular Matrix Scaffold Technology for Bioartificial Pancreas Engineering: State of the Art and Future Challenges Salvatori M, Katari R, Patel T, Peloso A, Mugweru J, Owusu K, Orlando G J Diabetes Sci Technol 2014. 8(1):159-169 |  |  |  
   |   | Encapsulation of Insulin Producing Cells for Diabetes Treatment Using Alginate and Cellulose Sulphate as Bioencapsulation Polymers Salmons B, Brandtner EM, Dangerfield JA, Gunzburg WH Diabetes Res Treatm 2014. 1(1):102 |  |  |  
   | .gif)  | Functional tissue engineering of the liver and islets Ohashi K, Okano T Anat Rec (Hoboken) 2013. In press |  |  |  
   |   | Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering Goh SK, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, Balasubramani M, Johnson SA, Sicari BM, Kollar E, Badylak SF, Banerjee I Biomaterials 2013. 34(28):6760-6772 |  |  |  
   |   | Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering Mirmalek-Sani SH, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M, Farney AC, Stratta RJ, Atala A, Opara EC, Soker S Biomaterials 2013. 34(22):5488-5495 |  |  |  
   |   | Biocompatible coating of encapsulated cells using ionotropic gelation Ehrhart F, Mettler E, Böse T, Weber MM, Vasquez JA, Zimmermann H Plos One 2013. 8(9):e73498 |  |  |  
   |   | Long-term functions of encapsulated islets grafted in nonhuman primates without immunosuppression Sasikala M, Rao GV, Vijayalakshmi V, Pradeep R, Pothani S, Kumar PP, Gaddipati R, Sirisha G, Cheemalakonda R, Tandan M, Subramanyam C, Vasudevan S, Reddy DN Transplantation 2013. 96(7):624-632 |  |  |  
   |   | Allogeneic bone marrow cocultured with human islets significantly improves islet survival and function in vivo Luo JZ, Xiong F, Al-Homsi AS, Ricordi C, Luo L Transplantation 2013. 95(6):801-809 |  |  |  
   |   | Advances in alginate gel microencapsulation of therapeutic cells Gimi B, Nemani KV Crit Rev Biomed Eng 2013. 41(6):469-481 |  |  |  
   |   | Encapsulated islet transplantation: strategies and clinical trials Buder B, Alexander M, Krishnan R, Chapman DW, Lakey JR Immune Netw 2013. 13(6):235-239 |  |  |  
   |   | Pancreatic islet transplantation in type 1 diabetes mellitus: an update on recent developments Ramesh A, Chhabra P, Brayman KL Curr Diabetes Rev 2013. 9(4):294-311 |  |  |  
   |   | The induction of cytokines by polycation containing microspheres by a complement dependent mechanism Rokstad AM, Brekke OL, Steinkjer B, Ryan L, Kollarikova G, Strand BL, Skjak-Bræk G, Lambris JD, Lacik I, Mollnes TE, Espevik T Biomaterials 2013. 34(3):621-630 |  |  |  
   |   | The role of pathogen-associated molecular patterns in inflammatory responses against alginate based microcapsules Paredes-Juarez GA, de Haan BJ, Faas MM, de Vos P J Control Release 2013. 172(3):983-992 |  |  |  
   |   | Microencapsulation: The Emerging Role of Microfluidics Tendulkar S, Ramasubramanian MK, Opara EC Micro Nanosyst 2013. 5(3):194-208 |  |  |  
   |   | Current Status on Immunoprotection of Transplanted Islets: Focus on Islet Microencapsulation Lacik I Micro Nanosyst 2013. 5(3):168-176 |  |  |  
   |   | Human Islet Transplantation: Current Status and Future Direction McGarrigle JJ, Oberholzer J Micro Nanosyst 2013. 5(3):156-161 |  |  |  
   |   | Hydrogel-based scaffolds for enclosing encapsulated therapeutic cells Acarregui A, Pedraz JL, Blanco FJ, Hernández RM, Orive G Biomacromolecules 2013. 14(2):322-330 |  |  |  
   |   | Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice Kerby A, Jones ES, Jones PM, King AJ Cytotherapy 2013. 15(2):192-200 |  |  |  
   |   | Generating β-cells in vitro: progress towards a Holy Grail Fryer BH, Rezania A, Zimmerman MC Curr Opin Endocrinol Diabetes Obes 2013. 20(2):112-117 |  |  |  
   |   | Therapeutic applications of encapsulated cells Acarregui A, Orive G, Pedraz JL, Hernandez RM Methods Mol Biol 2013. 1051:349-364 |  |  |  
   |   | Anti-HLA antibodies in regenerative medicine stem cell therapy Charron D, Suberbielle-Boissel C, Tamouza R, Al-Daccak R Hum Immunol 2012. 73(12):1287-1294 |  |  |  
   |   | Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems Bucko M, Mislovicova D, Nahalka J, Vikartovska A, Sefcovicova J, Katrlik J, Tkac J, Gemeiner P, Lacik I, Stefuca V, Polakovic M, Rosenberg M, Rebros M, Smogrovicova D, Svitel J Chem Papers 2012. 66(11):983-998 |  |  |  
   |   | Update on islet transplantation McCall M, James Shapiro AM Cold Spring Harb Perspect Med 2012. 2(7):a007823 |  |  |  
   |   | Making β cells from adult tissues Efrat S, Russ HA Trends Endocrinol Metab 2012. 23(6):278-285 |  |  |  
   |   | Suitability of polyelectrolyte shells modified with fullerene derivate for immunoisolation of cells Borkowska M, Godlewska E, Antosiak-Iwanska M, Kinasiewicz J, Strawski M, Szklarczyk M, Granicka LH J Biomed Nanotech 2012. 8(6): 912-917 |  |  |  
   |   | Cell therapy of type 1 diabetes mellitus: A bioartificial pancreas, or nothing? Benhamou PY, Lablanche S, Dalle P, Rivera F, Richard MJ, Halimi S Med Malad Metabol 2012. 6(5):397-402 |  |  |  
   |   | Immunosuppression-free transplantation reconsidered from a regenerative medicine perspective Orlando G Expert Rev Clin Immunol 2012. 8(2):179-187 |  |  |  
   |   | Cell therapy in type 1 diabetes Gioviale MC, Bellavia M, Damiano G, Buscemi G J Stem Cell Res Ther 2011. S2:4 |  |  |  |