Get Permission
Rev Diabet Stud, 2019, 15:35-48 DOI 10.1900/RDS.2019.15.35

Impact of Physical Exercise on Gut Microbiome, Inflammation, and the Pathobiology of Metabolic Disorders

Muhammad U. Sohail1, Hadi M. Yassine1, Aaqib Sohail2, Asmaa A. Al Thani1

1Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
2Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Clinical and Experimental Infection Research, Hannover, Germany
Address correspondence to: Muhammad U. Sohail, Biomedical Research Center, Zone 5, H10 Building, Qatar University, PO Box 2713, Doha, Qatar, e-mail:

Manuscript submitted February 3, 2019; resubmitted May 15, 2019; accepted June 10, 2019.

Keywords: diabetes, exercise, microbiome, microbe, inflammation, immune response, obesity, oxidative stress


BACKGROUND: The gastrointestinal tract (GIT) harbors a complex and diverse microbial composition that outnumbers our own body cells and their gene contents. These microbes play a significant role in host metabolism and energy homeostasis. Emerging evidence suggests that the GIT microbiome significantly contributes to host health and that impairments in the microbiome may cause the development of metabolic diseases. The microbiome architecture is shaped by several genetic and environmental factors, including nutrition and physical activity. Physical exercise has preventive or therapeutic effects in respiratory, cardiovascular, neuroendocrine, and muscular diseases. Yet, we still have little information of the beneficial effects of physical exercise on GIT health and microbial composition. Furthermore, we are not aware whether exercise-derived benefits on microbiome diversity can beneficially influence other tissues and body organs. OBJECTIVES: The aim of this article is to review the available literature on exercise-induced microbiome changes and to explain how these changes may induce inflammatory, immune, and oxidative responses that may contribute to the improvement of metabolic disorders. METHODS: A systemic and comprehensive search of the relevant literature using MEDLINE and Google Scholar databases was conducted during fall 2018 and spring 2019. The search identified sixty-two research and review articles that discussed exercise-induced microbiome changes. RESULTS: The review of the relevant literature suggests that exercise-induced microbial changes affect the host's immune pathways and improve energy homeostasis. Microbes release certain neuroendocrine and immune-modulatory factors that may lower inflammatory and oxidative stress and relieve patients suffering from metabolic disorders. CONCLUSIONS: Exercise-induced changes in microbial diversity are able to improve tissue metabolism, cardiorespiratory fitness, and insulin resistance.

Fulltext: HTML , PDF (3.0 MB)