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■ Abstract 
Glucagon-like peptide 1 (GLP-1) is a gut hormone which di-
rectly binds to the GLP-1 receptor located at the surface of 
the pancreatic β-cells to enhance glucose-induced insulin 
secretion. In addition to its pancreatic effects, GLP-1 can in-
duce metabolic actions by interacting with its receptors ex-
pressed on nerve cells in the gut and the brain. GLP-1 can 
also be considered as a neuropeptide synthesized by neu-
ronal cells in the brain stem that release the peptide directly 
into the hypothalamus. In this environment, GLP-1 is as-
sumed to control numerous metabolic and cardiovascular 
functions such as insulin secretion, glucose production and 
utilization, and arterial blood flow. However, the exact roles 
of these two locations in the regulation of glucose homeo-
stasis are not well understood. In this review, we highlight 

the latest experimental data supporting the role of the gut-
brain and brain-periphery axes in the control of glucose ho-
meostasis. We also focus our attention on the relevance of β-
cell and brain cell targeting by gut GLP-1 for the regulation 
of glucose homeostasis. In addition to its action on β-cells, 
we find that understanding the physiological role of GLP-1 
will help to develop GLP-1-based therapies to control glyce-
mia in type 2 diabetes by triggering the gut-brain axis or the 
brain directly. This pleiotropic action of GLP-1 is an impor-
tant concept that may help to explain the observation that, 
during their treatment, type 2 diabetic patients can be identi-
fied as ‘responders’ and ‘non-responders’. 
 

 

Keywords: type 2 diabetes · glycemic control · incretins · 
GLP-1 · DPP-4 · brain · exendin-4 · glucose homeostasis · 
area postrema  

 

Introduction 
 

 lucose-induced insulin secretion is regulated 
 by several neural and hormonal stimuli. In 
 particular, hormones secreted by intestinal 

endocrine cells potently stimulate glucose-induced 
insulin secretion after nutrient absorption. These 
hormones, called gluco-incretins or insulinotropic 
hormones, are major regulators of postprandial 
glucose homeostasis. The first incretin identified 
was called gastric inhibitory polypeptide (GIP) as 
it inhibits gastric acid secretion [1]. It was re-
named glucose-dependent insulinotropic polypep-
tide to point to its incretin effect, thus better re-
flecting its physiological action. The second in-

cretin to be discovered was called glucagon-like 
peptide 1 (GLP-1). Together, these incretins regu-
late the function of the endocrine pancreas and 
specific brain functions. Each incretin has its own 
specific action on the gastrointestinal tract, blood 
vessels, heart, adipose tissue, and liver. Alto-
gether, incretins control body weight and glyce-
mia. Consequently, the metabolic action of in-
cretins has served as the basis for multiple strate-
gies in the treatment of type 2 diabetes. 

A considerable amount of data is now available 
regarding the insulin secretory effect of incretins 
and the efficacy of incretin-based therapies in type 
2 diabetes. Most of the data focused on GLP-1. 
This is most likely because it is more suitable for 
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the treatment of diabetes since it is not lipogenic 
compared to GIP. Several studies have shown that 
type 2 diabetic patients are resistant to GIP 
treatment. Also, over the course of the last decade, 
GLP-1 was shown to play an important role in the 
control of cardiovascular functions and the brain 
Some findings point to an indirect role for the con-
trol of glucose metabolism, which has led to revis-
iting the metabolic action of the incretins. Firstly, 
80-90% of the secreted GLP-1 is degraded by the 
dipeptidyl-peptidase 4 (DPP-4) before reaching in-
sulin secreting β-cells. Secondly, a gut-to-brain 
GLP-1- and glucose-dependent axis has been de-
scribed involving the vagus nerve for the trans-
mission of nutritional signals towards the brain. 
Thirdly, GLP-1 and the GLP-1 receptor are pre-
sent in the brain. Finally, multiple physiological 
effects are associated with the role of incretins in 
the brain. Consequently, the central action of the 
incretins in type 2 diabetic humans is now a mat-
ter of debate. As most studies have been per-
formed on GLP-1, this review addresses the effects 
of GLP-1 on the brain in the regulation of energy 
homeostasis. It is noteworthy that recent litera-
ture points to a neuroprotective role for GLP-1, 
which, although important, is beyond the scope of 
this review. 

The incretin concept 

The incretin concept emerged from the observa-
tion that oral administration of an extract of pig 
duodenal mucosa could reduce hyperglycemia in 
diabetic patients [2]. The authors proposed that a 
stimulation of the internal pancreatic secretion 
would be mediated by this extract. Later, the de-
velopment of an insulin immunoassay proved that 
this effect was due to an insulinotropic action [3]. 
At the same time, Elrick and Mc Intyre found that 
the insulin response to an oral glucose load was 
much greater than the response measured after an 
intravenous infusion of an equivalent amount of 
glucose [4, 5]. Their findings led to the conclusion 
that intestinal factors called incretins control 
postprandial insulin release. Subsequently, the 
two peptides secreted by the intestine were found 
to be involved in increased insulin secretion fol-
lowing an oral glucose load, GLP-1 and GIP. 

First evidence on the existence of GLP-1 was 
found in patients with small-bowel resection who 
had a decreased incretin activity, despite plasma 
GIP remaining at normal level [6]. Later, GLP-1 
was discovered following the cloning and sequenc-
ing of mammalian proglucagon genes [7, 8]. GIP is 

secreted by enteroendocrine K-cells, found pre-
dominantly in the proximal gut (duodenum-
jejunum) [9, 10]. GLP-1 secreting L-cells are 
mainly localized in the distal gut (ileum-colon) [11-
12]. In healthy humans, the intravenous infusion 
of either of these two peptides contributes nearly 
equally to the incretin effect in the fasted state, or 
under an euglycemic clamp obtained with a glu-
cose infusion [13]. However, during hyperglycemia 
GLP-1 is more insulinotropic than GIP. Impor-
tantly, in most cases, GLP-1 maintains its insuli-
notropic effect in diabetic patients, but not GIP 
[14-17]. 

Peripheral GLP-1: secretion, 
metabolism and insulinotropic 
action 

In the intestine, GLP-1 is synthesized by the 
pre-proglucagon gene (Figure 1), which is mainly 
expressed in intestinal enteroendocrine L-cells, 

Abbreviations: 
 

3drV - dorsal third ventricle 
3V - third ventricle 
AMP - adenosine monophosphate 
ANS - autonomic nervous system 
AP - area postrema 
ARC - arcuate 
AgRP - agouti-related peptide 
ATP - adenosine triphosphate 
CART - cocaine- and amphetamine-regulated transcript 
CC - central canal 
cDNA - complementary deoxyribonucleic acid 
DMN - dorsomedian 
DMNX - dorsal motor nucleus of the vagus 
DPP-4 - dipeptidyl peptidase-4 
DVC - dorsal vagal complex 
GIP - glucose-dependent insulinotropic polypeptide 
GLP-1 - glucagon-like peptide-1 
Glp1r - GLP-1 receptor 
GLP-2 - glucagon-like peptide-2 
GRPP - glycentin related polypeptide 
HFD - high fat diet 
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IP-1 - intervening peptide 1 
KATP - ATP-sensitive potassium 
KO - knock-out 
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MPF - major proglucagon fragment 
mRNA - messenger ribonucleic acid 
NEP - neutral endopeptidase 
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PKA - protein kinases A 
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and to a lesser extent in 
pancreatic α-cells and neu-
rons. Although the mRNA 
transcript sequence is 
identical in these organs, it 
leads to the generation of a 
peptide precursor, namely 
proglucagon, which under-
goes different proteolytic 
cleavages, and yields dif-
ferent end products in 
these tissues [11, 18-20] 
(Figure 1). In L-cells, the 
end products are GLP-1, 
GLP-2, glicentin, and 
oxyntomodulin. GLP-1 is 
first synthesized as an 
immature form with 37 
amino acids. It is then 
cleaved and amidated at 
the C-terminal end to com-
pose the major bioactive 
form of GLP-1: a peptide 
with 30 amino acids, called 
GLP-1 (7-36)-amide, which 
is found in the brain and 
circulating blood of hu-
mans and rodents [21, 22]. 

Oral glucose absorption 
induces GLP-1 (7-36)-
amide release from intesti-
nal L-cells into intestinal 
capillaries. It reaches the 
portal vein, then liver and 
pancreas, where it binds to 
a specific receptor ex-
pressed on pancreatic β-cells, and enhances glu-
cose-induced insulin secretion. This glucose-
dependent physiological mechanism is the basis of 
an important therapeutic advantage that avoids 
iatrogenic hypoglycemia. Thus, oral glucose is a 
potent stimulus for the release of GLP-1, and this 
does not occur when glucose bypasses the absorp-
tive processes in the gut. The molecular events 
leading to GLP-1 release by L-cells have been de-
scribed in a recent review [23]. GLP-1 also de-
creases glucagon secretion by pancreatic α-cells 
[14], and increases the insulin to glucagon ratio, 
which improves insulin sensitivity. Furthermore, 
GLP-1 increases β-cell mass by stimulating prolif-
eration, inducing islet neogenesis, and inhibiting 
apoptosis [24-25]. Because of these potent insuli-
notropic actions, GLP-1 has attracted considerable 
attention as the major candidate for the role of the 
putative ‘incretin’ hormone. 

DPP-4, which is ubiquitously found in the cap-
illary endothelium, rapidly inactivates GLP-1 (7-
36)-amide in the intestinal capillaries, the hepa-
toportal vein, and the periphery [26]. DPP-4 medi-
ates GLP-1 degradation by cleaving the di-peptide 
at the N-terminus and removing the histidine-
alanine dipeptide, yielding GLP-1 (9-36)-amide 

[27]. DPP-4 is present in the brain, where it shows 
high activity when measured in the hypothala-
mus, hippocampus, circumventricular organs, 
choroid plexus, and leptomeninges [28-29]. GLP-
1(7-36)-amide is also degraded by another mem-
brane-bound peptidase, called neutral endopepti-
dase 24.11 (NEP24.11), which is expressed in the 
periphery and the brain [30]. This peptidase de-
grades GLP-1 (7-36)-amide into smaller peptides 
including GLP-1 (28-36)-amide and GLP-1 (32-36)-
amide [31]. Thus, after release from intestinal L-
cells, the highest GLP-1 concentration occurs in 
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Figure 1. Schematic representation of the structure of proglucagon and its post-
translational processing in different tissues. In the pancreas, post-translational 
processing of proglucagon leads to the generation of glycentin related polypep-
tide (GRPP), glucagon, intervening peptide (IP-1), and a major proglucagon 
fragment (MPF). In the brain and the gut, post-translational processing of proglu-
cagon liberates GLP-1, GLP-2, IP-2, glicentin, and oxyntomodulin.. Proconverta-
ses and carboxypeptidases are responsible for the processing of the mature pep-
tides. Numbers represent the position of amino acids following the signal pep-
tide (not shown). 
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the intestinal submucosal extracellular space, 
while intermediate levels can be found in the 
hepatoportal vein. Comparatively low concentra-
tions are found in the systemic circulation [32]. It 
is estimated that less than 10% of intestinal GLP-
1 is active after the first hepatic pass, and reaches 
the blood circulation to target peripheral organs 
such as the brain [32]. 

Because of its rapid inactivation by enzymes, 
GLP-1 (7-36)-amide has a very short half-life in 
the blood circulation, approximately 2 minutes in 
human and most mammalian species. It has been 
proposed that GLP-1 secretion in response to meal 
ingestion is reduced in type 2 diabetes [16, 33], al-
though its relative insulinotropic activity is pre-
served [15]. However, a recent meta-analysis con-

cluded that GLP-1 secretion in patients could be 
increased, normal, or reduced [34]. Therefore, de-
bate is still ongoing, although long-lasting active 
analogues of GLP-1 and inhibitors of DPP4 have 
already been developed as drugs. These drugs are 
designed to increase the stability of the physiologi-
cally released hormone in type 2 diabetes [35]. At 
present, there is debate whether both drugs be-
long to the same therapeutic class. 

Brain GLP-1 signaling and metabolic 
actions 

Experimental studies carried out in rodent 
brains show that GLP-1 and its receptor are syn-
thesized in selective brain areas, mainly in brain-
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Figure 2. The gut-to-brain and the brain-to-periphery axes are part of GLP-1 metabolic and vascular functions. In response 
to glucose and lipid, GLP-1 is secreted by the intestine into the mesenteric capillaries and released into the hepatoportal vein. 
This activates termination ends from the vagus nerve to generate a neural signal towards the brain stem. The corresponding 
nuclei, such as the nucleus of the solitary tract nucleus (NTS) and the area postrema (AP), send axons to the hypothalamus, 
which release GLP-1 and activate the receptors. Then, a new signal is sent towards peripheral tissues through the autonomic 
nervous system (ANS) to regulate numerous functions. In blood and tissues, DPP-4 continuously degrades GLP-1. The remain-
ing hormone could reach β-cells and enhance glucose-induced insulin secretion through the direct route, or by targeting the 
brain, through the indirect route. 
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stem and hypothalamus. 
The localization of GLP-
1 receptors in the brain 
may help us to under-
stand the physiological 
role of brain GLP-1 sig-
naling. 

Brain GLP-1 synthesis 

In the brain, pre-
proglucagon expression 
is found in the solitary 
tract nucleus (NTS) and 
in the brainstem [20, 
22]. Post-translational 
processing of progluca-
gon is similar to L-cell 
processing, and leads to 
GLP-1 with roughly 
equimolecular amounts 
of glicentin and oxynto-
modulin [20, 22] (Figure 
2). GLP-1 (7-36)-amide is 
synthesized by neuronal 
cell bodies in the caudal 
region of the NTS in the 
brainstem. There is a 
nucleus that forms the 
border of the caudal part 
of the fourth ventricle 
(Figure 3). The NTS is 
located in the dorsal va-
gal complex (DVC), 
which includes the area 
postrema (AP) and the 
dorsal motor nucleus of the vagus (DMNX). This 
complex receives visceral sensory inputs, gener-
ated by the vagal nerves that innervate the gastro-
duodenal tract [36]. The distribution of cells ex-
pressing pre-proglucagon is not limited to a cluster 
of neurons in the caudal part of the NTS. It is also 
found in a small number of neurons that extend 
laterally from the NTS through the dorsal reticu-
lar area into the A1 area located in the medulla 
[20, 37-39]. 

In retrograde tracing studies, it has been 
shown that GLP-1 immunoreactive fibers in the 
hypothalamus originate from NTS cell bodies [37]. 
These efferent projections from the NTS densely 
innervate the hypothalamus and mainly the 
paraventricular and the dorsomedial nuclei [20, 
37, 39]. Moreover, moderate innervations are lo-
cated in the arcuate nuclei and the subfornical or-
gan [20]. Numerous GLP-1 immunoreactive fibers 

can also be found in extrahypothalamic areas such 
as thalamic and cortical areas. In the brainstem, 
fibers project towards reticular formation and spi-
nal cord [40, 41]. 

Brain GLP-1 receptors 

GLP-1 receptor cDNA from human [42] and rat 
[43] brains has been cloned and sequenced. The 
deduced amino acid sequences are the same as 
those found in pancreatic islets [44]. More pre-
cisely, both receptors are 463 amino acids in 
length, and show 90% amino acid sequence homol-
ogy [44-46]. The receptor belongs to the class B 
family of 7 transmembrane-spanning G-protein-
coupled receptors [47]. This receptor is linked to 
the adenylate cyclase system and protein kinase A 
(PKA) activation [48]. However, it has been shown 
that the receptor can also activate the phospholi-
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Figure 3. Schematic brain GLP-1 receptors localization in the mouse brain. GLP-1 
receptors have been primarily identified in the paraventricular (PVN), dorsomedian 
(DMN), and arcuate (ARC) hypothalamic nuclei. In the brainstem, they were also lo-
calized in the nucleus of the tractus solitarius (NTS) and the area postrema (AP). 
These two last areas in the brainstem also contain the cell bodies of neurons synthe-
sizing the GLP-1 which projects into the hypothalamus. All these localizations con-
tribute to the metabolic effects described in the figure. Ventricles are represented in 
blue. CC: central canal. 3V: third ventricle. LV: lateral ventricle. 3drV: dorsal third 
ventricle. 
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pase C pathway on pancreatic β-cells, which leads 
to protein kinases C (PKC) stimulation [46, 49, 
50]. 

In situ hybridization studies with GLP-1 recep-
tor mRNA and binding studies using radiolabeled 
GLP-1 have found labeled cells distributed 
throughout the entire brain in rodents [41, 51, 52] 
and humans [53]. These studies have also shown a 
high level of GLP-1 receptor-expressing neurons in 
the hypothalamus and the brainstem. These are 
two brain areas which are involved in the central 
control of energy homeostasis and autonomous 
functions. In the hypothalamus, the receptor is 
mainly located in the following nuclei: the arcuate 
nucleus, the paraventricular nucleus, the dor-
somedial nucleus, and the supraotic nucleus (Fig-
ure 3). It can also be found in the DVC, especially 
in the NTS and the area postrema (Figure 3). 
Moreover, GLP-1 binding sites are present in the 
circumventricular organs such as the subfornical 
organ and the area postrema [41, 51, 54]. These 
last two locations could be the target for both pe-
ripheral GLP-1 of intestinal origin and GLP-1 syn-
thesized in the nervous system. 

The gut-to-brain GLP-1-dependent axis 

The relatively low plasma level, and rapid me-
tabolism of GLP-1 in the blood, raise questions 
about an alternative neural pathway that account 
for part of its endocrine effects on target organs 
such as pancreatic β-cells (especially on its effects 
on glucose tolerance). Thus, it has been suggested 
that GLP-1 secreted from L-cells could potentially 
influence brain neuronal activities via an alterna-
tive neural pathway initiated by sensors in the 
hepatic portal region [55] (Figure 2). 

Indeed, experimental studies on rodents in our 
laboratory, and from others, have shown that glu-
cose detection is associated with GLP-1 secretion 
and action on peripheral receptors localized on va-
gal nerve fibers in the enteric area [56], which in-
cludes the hepatoportal veins [55, 57-58]. Thereby, 
the vagus nerve transmits the metabolic informa-
tion to the NTS in the brainstem [59-63], which 
relays the glucose signal to hypothalamic nuclei 
[59, 64]. The brain centralizes the metabolic in-
formation and generates new signals to guide the 
energetic flux towards tissues, either for energy 
use or storage. This process is called the gut-to-
brain-to-periphery axis. Initially, we showed that 
a low rate infusion of glucose into the portal vein 
caused a paradoxical hypoglycemia [65-66]. This 
implied the activation of glucose sensors located in 
the portal vein, and the mechanism required the 

glucose transporter GLUT2 to detect glucose [67]. 
Hence, we suggested that mechanisms similar to 
those observed in insulin secreting β-cells were re-
sponsible for the activation of the gut-to-brain 
axis. Therefore, GLP-1 and somatostatin are hor-
mones positively and negatively involved in the 
transmission of the nutritional signals towards 
the brain, respectively [65]. 

Another hypothesis is that circulating GLP-1 
can access the brain to exert its metabolic effects, 
but this is still a matter of debate. Experimental 
studies in rodents have shown that circulating 
GLP-1, or its agonist exendin-4 (see below), can 
reach the brain as they can bind to blood-brain 
barrier-free circumventricular organs such as the 
subfornical organ close to the hypothalamus [68], 
and the area postrema in the brainstem [68-69]. 
Another mechanism determining central GLP-1 
action could be GLP-1 neuronal secretion in the 
brain which appears in response to glucose detec-
tion by intestinal cells. In line with this observa-
tion, our laboratory found that a brain infusion of 
exendin-9, an antagonist of the GLP-1 receptor, 
can reduce muscle glucose utilization and its stor-
age as glycogen in mice receiving glucose from an 
intragastric catheter [70]. However, the molecular 
mechanisms controlling this secretion remain un-
clear [71]. 

The physiologic role of GLP-1 receptors in the 
control of metabolic functions (Figure 2) has often 
been studied in rodents, following intracere-
broventricular (icv) infusions of GLP-1 (7-36)-
amide, or its analogues such as exendin-4 that are 
resistant to enzyme degradation (by NEP and 
DPP-4) [31]. Exendin-4, or exendin (4-39), is a 
natural peptide, purified from the salivary secre-
tions of the Gila monster lizard (Heloderma sus-
pectum). This peptide shows 53% sequence homol-
ogy with the mammalian GLP-1 (7-36)-amide [72-
73]. Binding studies using radiolabeled iodinated 
GLP-1 or exendin-4 have shown that both peptides 
specifically interact with the same receptor ex-
pressed on pancreatic β-cells isolated from rodents 
[73-74] and humans [44]. In the brain, these two 
peptides show an identical distribution pattern of 
binding sites [51]. Furthermore, these peptides in-
crease the production of intracellular cyclic AMP 
and stimulate glucose-induced insulin secretion 
[44, 73-74]. All the abovementioned effects are in-
hibited by the GLP-1 receptor antagonist, exendin-
9 or exendin (9-39) that is a truncated form of ex-
endin-4 [44, 74]. The properties of exendin-4 as an 
agonist, and of exendin-9 as an antagonist, open 
the possibility of using these peptides as tools to 
study the physiology of the GLP-1 receptor. 
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Nutritional behavior and body 
weight 

The anorectic properties of centrally adminis-
trated GLP-1 were described for the first time dur-
ing the 1990’s. These studies showed that a GLP-1 
infusion into the brain ventricles of rodents inhib-
its short-term food and water intake, and de-
creases body weight in the long term [75-80]. 
These properties were also demonstrated in clini-
cal studies: an intravenous GLP-1 infusion both 
decreased food intake and increased satiety in 
healthy [81], diabetic [82], and obese [83] subjects. 
Moreover, weight loss is reported in diabetic sub-
jects treated for 6 weeks with GLP-1 adminis-
trated subcutaneously [84]. 

The mechanism by which GLP-1 inhibits food 
intake is not fully understood. It has been sug-
gested that it could result from a central action of 
GLP-1. It has also been suggested that part of the 
anorectic effects of GLP-1 could result from its 
side effects such as nausea and inhibition of gas-
tric emptying [85-87]. Another mechanism could 
be related to activation of peripheral GLP-1 recep-
tors expressed by the vagus nerve [88-89], which 
relays metabolic signals to the brain. Ruttinmann 
et al. have shown that a peripheral injection of 
GLP-1, irrespective of its site of infusion (vena 
cava, intraperitoneal cavity, or portal vein), re-
duced food intake without affecting the subse-
quent inter-meal interval, the size of subsequent 
meals, or the cumulative food intake [88]. These 
effects were only attenuated when GLP-1 was in-
traperitoneally administered to rats with subdia-
phragmatic vagal deafferentations. Furthermore, 
intraperitoneal injection of exenatide dose-
dependently increases c-fos expression both in 
myenteric and submucosal neurons of the rat duo-
denum, but not in other locations like jejunum and 
ileum. Exenatide is a synthetic version of exendin-
4 recently approved for clinical use in type 2 dia-
betic patients [90-92]. These peripheral effects are 
also associated with brain neuronal activations in 
the brainstem (area postrema, NTS, and dorsal 
motor nucleus of the vagus), and can be prevented 
by an intraperitoneal injection of exendin-9 [63]. 
Thus, the satiating effect of peripherally adminis-
tered GLP-1 at least requires an activation of pe-
ripheral GLP-1 receptors, which metabolically 
transmits the signal of satiety to the brain using 
the vagus nerve. It is well demonstrated that 
GLP-1 can act on brain neuronal circuits in the 
hypothalamus involved in appetite control [77]. 

GLP-1 receptor mRNA is highly expressed in 
the hypothalamic arcuate nucleus, and precisely 
overlaps the area occupied by neurons co-
expressing propiomelanocortin (POMC) [93]. Fur-
thermore, icv infusion of GLP-1 in fasted rodents 
increases the synthesis of anorexigenic peptides 
(POMC and cocaine- and amphetamine-regulated 
transcript (CART)) both in arcuate and paraven-
tricular nuclei [94]. In these brain locations, the 
peptide decreases the synthesis of orexigenic pep-
tides (neuropeptide Y (NPY) and agouti-related 
peptide (AgRP)). We should note that in studies 
with GLP-1 injected in situ into rat brain hypotha-
lamic nuclei the paraventricular nucleus [79], and 
not the arcuate nucleus [93], is involved in the an-
orectic response to GLP-1. 

Cardiovascular effects 
The first studies in the 1990’s described insu-

lin-induced vasodilatation of the femoral artery in 
humans, and its impact on the control of muscle 
glucose utilization and glucose tolerance [95-98]. 
Today, it is well known that the cardiovascular 
system plays a key role in regulating glucose ho-
meostasis. In 1999, Barragan et al. demonstrated 
for the first time that brain GLP-1 infusion into 
the lateral ventricle of conscious rats increased 
blood pressure and heart rate in these rodents 
[99]. Later, these effects were replicated with a 
brain infusion of exendin-4, the agonist of the 
GLP-1 receptor [69, 100]. It is noteworthy that 
GLP-1 and exendin-4 both increase blood pressure 
and heart rate when they are infused into the 
blood in rats [54, 101], and that these effects can 
be prevented by a cerebral injection of exendin-9 
[99]. This last observation suggests that circulat-
ing GLP-1 can regulate cardiovascular function by 
acting on the brain. We believe that the effect on 
blood pressure could be due to an indirect action 
on blood vessels. This hypothesis has been further 
demonstrated by our laboratory in healthy, con-
scious mice receiving an exendin-4 brain infusion 
in the lateral ventricle [102]. Our experimental 
work has shown that exendin-4 decreases insulin-
induced vasodilatation of the femoral artery, and 
that this mechanism correlates with a decrease in 
insulin sensitivity. 

It is well demonstrated that GLP-1 recruits the 
autonomic nervous system to modulate the cardio-
vascular tone [39]. Indeed, studies have reported 
on a role for the parasympathetic and sympathetic 
branch in this control mechanism. However, it is 
not clear which branch plays the more important 
role. Initially, experiments on healthy rodents 



 

GLP-1 and the Gut-Brain Axis The Review of DIABETIC STUDIES 425  
  Vol. 8 ⋅ No. 3 ⋅ 2011 
 

www.The-RDS.org  Rev Diabet Stud (2011) 8:418-431  

Special Issue 
Drug Development and Clinical Trials in T2D 

demonstrated a potential role of the parasympa-
thetic branch in the control of heart rate and blood 
pressure in response to peripheral or central GLP-
1 action. This observation was demonstrated by 
vagotomy experiments [99] and pharmacological 
experiments using an icv injection of cholinergic 
tone inhibitors [100] in rodents receiving an ex-
endin-4 brain infusion into the lateral ventricle. 
Other studies have assumed a role for the sympa-
thetic tone. This has been suggested by an ex-
periment showing that an intravenous or cerebral 
infusion of exendin-4 in rodents can stimulate c-
fos expression (a marker of neuronal activation) in 
catecholaminergic neurons of the brainstem and in 
particular in the area postrema [54, 69]. Conse-
quently, the area postrema has been thought to 
regulate these hemodynamic effects. In humans, a 
clinical study on healthy subjects assessed the ef-
fects of GLP-1 infusion on blood pressure and 
heart rate, and the possible activation of the sym-
pathetic nervous system. The authors did not find 
any clear variation in systolic or diastolic blood 
pressure, but there was increased sympathetic 
nerve activity in skeletal muscles [103]. 

Cardiac effects have not been described in 
clinical studies with type 2 diabetic subjects. Al-
though a 48 hour continuous subcutaneous GLP-1 
infusion has no chronotropic effect, it can decrease 
both systolic and diastolic blood pressure in pa-
tients [104]. Interestingly, the same observations 
are reported in long-term studies (12 weeks to 6 
months) with exenatide [105-106]. However, in 
non-diabetic patients with congestive heart fail-
ure, a minor increase in heart rate and diastolic 
blood pressure was observed during a 48 hour con-
tinuous subcutaneous GLP-1 infusion [107]. In 
conclusion, these observations suggest that the ef-
fects of GLP-1 on cardiovascular function seem to 
differ in clinical studies, and still remain to be un-
raveled. It is important to note that a recent re-
view based on clinical trials has reported a posi-
tive beneficial impact of treatments with GLP-1, 
or its agonists (exenatide or liraglutide), on car-
diac function in diabetic subjects. In part, these 
therapies show cardioprotective effects by reduc-
ing cardiovascular risk factors such as glycemia, 
lipidemia, blood pressure, and body weight [108]. 

Action on peripheral glucose homeo-
stasis and fuel partitioning 

Data from healthy rodents 

Data from our laboratory, and from others, 
have shown that brain GLP-1 receptor signaling 

has metabolic effects on peripheral glucose toler-
ance. We were able to show in mice that intragas-
tric low-rate glucose infusion (insufficient to affect 
systemic glucose levels) triggers skeletal muscle 
glucose uptake and glycogen synthesis, which 
highlights the significance of the gut-to-brain-to-
periphery axis [70]. This effect is controlled by 
brain GLP-1 receptor activation, as it is abolished 
by prior icv administration of the GLP-1 receptor 
antagonist, exendin (9-39), and it is absent in 
GLP-1 receptor knock-out (KO) mice. We con-
cluded that prandial perception of food facilitates 
a central GLP-1 receptor-dependent mechanism to 
improve glucose disposal. The quantification of the 
c-fos expression pattern in brainstem and hypo-
thalamus showed that the enteric glucose sensor 
system sent signals to these brain areas. Neuronal 
cells in the NTS were activated by a low-rate in-
tragastric glucose infusion, whereas cells from the 
arcuate nucleus of the hypothalamus were 
switched to rest [59]. These effects were attenu-
ated in GLP-1 receptor KO mice, suggesting a role 
for brain GLP-1 signaling in influencing neural 
circuits to regulate glucose metabolism. 

We have also demonstrated that brain GLP-1 
signaling monitors the development of energy re-
serves in preparation for the fasting phase follow-
ing a meal. We used hyperglycemic and hyperinsu-
linemic glucose clamps to raise systemic glucose 
and insulin concentrations to levels similar to 
those in prandial states. After exendin-4 activa-
tion of central GLP-1 receptors, we found reduced 
insulin-induced glucose uptake in skeletal muscles 
which favored hepatic glycogen stores [70]. In 
these experimental conditions, our results also 
showed that icv exendin-4 infusion increases insu-
lin secretion by pancreatic β-cells, but prevents the 
vasodilatatory action of this hormone on the femo-
ral artery [102]. We have further demonstrated 
that exendin-4 impairs muscle blood flow, an effect 
which contributes in part to the decline in skeletal 
muscle glucose utilization and muscle glucose up-
take. During these experiments, we also found 
that icv brain infusion of exendin-4 activates neu-
ral pathways such as the vagus nerve [102] and 
muscle innervation [70], which mediates periph-
eral effects on muscle blood flow and insulin resis-
tance. We assume that these physiological mecha-
nisms prevent an overutilization of glucose by 
muscles during feeding to save glucose for the 
liver, and to prepare efficiently for the next fasting 
state [70]. However, the brain molecular and cellu-
lar mechanisms controlling the metabolic effects of 
brain GLP-1 remain unknown, and need to be in-
vestigated. 
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Sandoval et al. showed that the hypothalamic 
arcuate nucleus, and not the paraventricular nu-
cleus, could be involved in this regulation. Indeed, 
the group showed that a GLP-1 infusion directly 
into the arcuate, and not the paraventricular nu-
cleus, decreased glucose production and glucose 
uptake by peripheral tissues during clamp studies 
[93]. Also, co-infusion of a KATP channel blocker 
with GLP-1 into the arcuate nucleus inhibited the 
effect of GLP-1 on peripheral glucose metabolism 
[93]. These data confirm that central glucose-
sensing neurons in the hypothalamic brain area 
are involved in brain GLP-1 signaling and control 
glucose tolerance. Finally, Nogueiras et al. demon-
strated that a continuous icv infusion of GLP-1 in 
mice, directly and potently decreased lipid storage 
in white adipose tissue. This mechanism is inde-
pendent of food intake and appears to be, in part, 
mediated by the sympathetic nervous system and 
the β-2 adrenoreceptors expressed in white adi-
pose tissue [109]. 

In a recently published work, we have investi-
gated the molecular mechanisms activated by 
GLP-1 in the brain that coordinate both vascular 
function and peripheral muscle glucose metabo-
lism [110]. In vitro studies using rat pancreatic β-
cells had previously shown that GLP-1 can acti-
vate PKC to modulate insulin secretion [50]. Ac-
cording to this observation, we support the hy-
pothesis that these enzymes could be part of the 
molecular mechanisms of brain GLP-1 signaling. 
PKC are serine/threonine kinases that belong to 
intracellular signaling pathways. These enzymes 
can contribute to the regulation of synthesis and 
release of neurotransmitters, and to electrical ac-
tivation of neuronal cells [111]. Therefore, we have 
repeated our experimental hyperglycemic and hy-
perinsulinemic clamp studies described above 
[102]. We observed that the brain exendin-4 infu-
sion acutely triggers the translocation of cyto-
plasmic PKC-δ to the plasma membrane in cells 
from the hypothalamus. These functional and mo-
lecular effects were blocked by an icv brain ex-
endin-9 infusion, or the genetic invalidation of the 
GLP-1 receptor (Glp1r-/- mice). Thus, our recent 
data have shown for the first time that brain GLP-
1 can activate hypothalamic PKC-δ to decrease in-
sulin-stimulated vasodilatation and whole body 
glucose utilization. 

Data from diabetic and obese rodents 

What is known about brain GLP-1 signaling 
during a state of overnutrition such as obesity or 
type 2 diabetes? Experimental studies on diabetic 

rodents have shown that brain GLP-1 signaling is 
stimulated during diabetes, and may derange gly-
cemic control. This observation is supported by 
previous data from our group, and by others. It 
has been shown that expression of the proglucagon 
gene encoding GLP-1 is increased in the brainstem 
of diabetic high fat diet (HFD)-fed mice [112], and 
obese Zucker rats [38], which both contain cell 
bodies of GLP-1 neurons oriented towards the hy-
pothalamus. Following this observation, and based 
on the hypothesis that GLP-1 can activate PKC, as 
demonstrated in pancreatic β-cells [50] or during 
an exendin-4 brain infusion, we have demon-
strated that overall PKC activity is increased in 
the hypothalamus of diabetic HFD-fed mice in the 
fed state and during hyperinsulinemic euglycemic 
clamps [110]. This increased activity is associated 
with a translocation of both PKC-δ and -α to the 
plasma membrane of hypothalamic cells. However, 
exendin-9 brain infusion only inhibits PKC-δ 
translocation and improves the otherwise im-
paired insulin sensitivity and vasoconstriction ob-
served in the control group. 

Furthermore, the disruption of the GLP-1 re-
ceptor in Glp1r-/- mice prevents both overall PKC 
activation and PKC-δ translocation to the mem-
brane fraction in healthy and diabetic Glp1r-/- 
mice. In this latter group, the genetic deletion 
seems to prevent both the impairment of the vas-
cular blood flow and the insulin sensitivity during 
clamp studies. Thus, all these observations sug-
gest that brain GLP-1 activity is increased during 
metabolic diseases. We believe that this overactiv-
ity might be due to an insidious increase in glyce-
mia, which chronically stimulates the basal activ-
ity of brain neuronal cells. Therefore, this central 
mechanism could alter the metabolic effects of 
hormones released during the postprandial state, 
such as insulin. 

Conclusions 
Brain GLP-1 action has been studied over the 

last decade, but its physiological impact is still not 
completely understood. Numerous studies re-
ported in the literature indicate a common effect of 
both peripheral and central GLP-1 receptor signal-
ing on glucose homeostasis to promote glucose tol-
erance. These observations point to a cross-talk 
between circulating GLP-1 and the brain, but the 
relative importance of peripheral versus central 
GLP-1 for the control of glucose homeostasis is not 
known. 

We think that the peripheral action of GLP-1 
may play a critical role in glycemic regulation, 



 

GLP-1 and the Gut-Brain Axis The Review of DIABETIC STUDIES 427  
  Vol. 8 ⋅ No. 3 ⋅ 2011 
 

www.The-RDS.org  Rev Diabet Stud (2011) 8:418-431  

Special Issue 
Drug Development and Clinical Trials in T2D 

perhaps even more important than its central ac-
tion, because it initiates the metabolic information 
which is then redirected towards peripheral or-
gans by the brain. It is also possible that the pe-
ripheral secretion indirectly regulates the level of 
activation of brain neuronal circuits expressing 
the GLP-1 receptor. We raise this hypothesis from 
observations obtained in mice invalidated for the 
GLP-1 receptor. Our recent data show that these 
mice do not develop the metabolic phenotype 
which was very similar to that observed in the 
group of diabetic mice brain-infused with the GLP-
1 receptor antagonist, exendin-9 [110]. This obser-
vation suggests that the peripheral receptor may 
play a critical role in diabetes development. 

It is also important to find out whether long-
acting GLP-1 analogs could improve glucose toler-
ance in type 2 diabetes by acting on the brain. A 
similar conceptual question could be applied to 
DPP-4 inhibitors. As opposed to GLP-1 analogues, 
DPP-4 inhibitor treatment increases portal vein 
GLP-1 concentrations, and activates the gut-to-
brain vagus nerve activity [113]. 

Hence, the identification of the gut-to-brain-to-
periphery axis opens new avenues for the treat-

ment of type 2 diabetes. The high concentration of 
circulating GLP-1 analogue obtained during the 
treatment of type 2 diabetes could reach the brain 
to favor neuroprotection and control of food intake. 
It is noteworthy that the effect of brain GLP-1 on 
insulin action and vascular blood flow is clearly 
analyzed in animals, but have never been men-
tioned in relation to humans. We consider that 
there is a strong case for such studies in humans. 

Beside GLP-1 analogues, the use of DPP4 in-
hibitors could offer different therapeutic strate-
gies. We can be sure that they recruit the gut-to-
brain vagus nerve-dependent axis, which is 
unlikely the case for GLP-1 analogs. Different pa-
tient conditions could be treated, and therapies 
could be combined where appropriate. Such new 
incretin-based therapies, utilizing newly discov-
ered modes of action, would need clinical trials to 
validate them, but have a great potential for a new 
era of diabetes treatment. 
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