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■ Abstract 
The development of an effective diabetes diagnosis system 
by taking advantage of computational intelligence is re-
garded as a primary goal nowadays. Many approaches based 
on artificial network and machine learning algorithms have 
been developed and tested against diabetes datasets, which 
were mostly related to individuals of Pima Indian origin. Yet, 
despite high accuracies of up to 99% in predicting the correct 
diabetes diagnosis, none of these approaches have reached 
clinical application so far. One reason for this failure may be 
that diabetologists or clinical investigators are sparsely in-
formed about, or trained in the use of, computational diag-
nosis tools. Therefore, this article aims at sketching out an 
outline of the wide range of options, recent developments, 
and potentials in machine learning algorithms as diabetes 
diagnosis tools. One focus is on supervised and unsuper-
vised methods, which have made significant impacts in the 

detection and diagnosis of diabetes at primary and advanced 
stages. Particular attention is paid to algorithms that show 
promise in improving diabetes diagnosis. A key advance has 
been the development of a more in-depth understanding and 
theoretical analysis of critical issues related to algorithmic 
construction and learning theory. These include trade-offs 
for maximizing generalization performance, use of physi-
cally realistic constraints, and incorporation of prior knowl-
edge and uncertainty. The review presents and explains the 
most accurate algorithms, and discusses advantages and pit-
falls of methodologies. This should provide a good resource 
for researchers from all backgrounds interested in computa-
tional intelligence-based diabetes diagnosis methods, and 
allows them to extend their knowledge into this kind of re-
search. 
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Introduction  
 

 iabetes has been recognized as a continuing 
 health challenge for the twenty-first cen- 
 tury, both in developed and developing 

countries. It is understood that diabetes preva-
lence is increased because of modern lifestyles, ur-
banization, and economic development [1]. It is a 
global problem with devastating human, social, 
and economic impact, affecting around 300 million 
people worldwide [2]. 

Type 2 diabetes is a chronic disease that oc-
curs either when the pancreas does not produce 
enough insulin, or when the body cannot effec-
tively use the insulin it produces. It is frequently 
asymptomatic [3]. Although detection is improv-
ing, the delay from disease onset to diagnosis may 
exceed 10 years [4]. To diagnose diabetes, a physi-
cian has to analyze many factors. Undoubtedly, 
the evaluations of data obtained from patients and 
expert decisions are critical for diagnosis. How-
ever, factors such as lack of experience by the ex-
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perts, or their fatigue, may lead to erroneous di-
agnosis. Early intervention with lifestyle modifica-
tions or pharmacotherapy has been shown to effec-
tively delay or prevent type 2 diabetes and its 
complications in adults [5]. 

 
For prevention of type 2 diabetes, a compre-

hensive guideline was issued specifying lifestyle 
changes [6]. Various strategies have also been put 
forward to reduce diabetes risk [7]. Naturally, pre-
vention is preferable, but current treatment meth-
ods are not yet fully adequate to reach this goal. 
Hence, there is a growing need for early detection 
of diabetes. To address this need, and to provide 
more detailed and rapid analysis of medical data, 

risk assessment tools and their various algorithms 
have been widely investigated. 

For early detection of diabetes, various risk 
scores have been devised. A detailed survey of 
these tools with their specificity and sensitivity 
has been provided by Schwarz et al. in which the 
authors found the Finnish Diabetes Risk Score as 
the most convenient tool for early diagnosis of dia-
betes [8]. However, as this method involves hu-
man intervention in deciding criteria and score, it 
may by be exposed to the human error. Therefore, 
machine learning and statistical pattern recogni-
tion has been the subject of tremendous interest in 
the biomedical community as these approaches of-
fer promise for improving the sensitivity and/or 
specificity of detection and diagnosis of disease. At 
the same time, these approaches reduce the poten-
tial for human error in the decision making proc-
ess [9]. In particular, further development of 
methods that explicitly incorporate prior knowl-
edge and uncertainty into the decision-making 
process would be very important for diabetes de-
tection. Extensive studies by many researchers 
have demonstrated higher performance and accu-
racy in predicting clinical outcomes of diabetes di-
agnosis using neural network strategies (Table 1). 
Advantages and pitfalls of using various algo-
rithms in diabetes prediction are listed in Table 2. 

Datasets for diabetes diagnosis 

Significant work has been reported on Pima 
Indian diabetes datasets (PID). These studies ap-
plied different methods to the given problem, and 
achieved high classification accuracies using the 
dataset taken from the University of California, 
Irvine (UCI) machine learning repository [10]. 
This database provides a well validated data re-
source to explore the prediction of diabetes. The 
eight variables in the dataset include: 

 
- number of times pregnant, 
- plasma glucose concentration at 2 hour in an 

oral glucose tolerance test, 
- diastolic blood pressure (mmHg), 
- triceps skin fold thickness (mm), 
- 2-h serum insulin (IU/ml), 
- body mass index (weight in kg/height in m), 
- diabetes pedigree function, and 
- age (years). 
 
While PID is one of the mostly used datasets 

for prediction of type 2 diabetes, some researchers 
prefer to investigate diagnosis using data from 
hospitals, and to incorporate their own parameters 

Abbreviations: 
 

ADAP - adaptive learning routine 
ANFIS - artificial neuro-fuzzy inference system 
ANN - artificial neural network 
ARTMAP - adaptive resonance theory mapping 
ARTMAP-IC - adaptive resonance theory mapping instance 
counting 
BPNN - back-propagation neural network 
CART - classification and regression trees 
CART-DB - classification and regression trees distribution-
based 
ESOM - evolving self-organizing maps 
FIS - fuzzy inference system 
GCS - growing cell structure 
GDA - generalized discriminant analysis 
GNG - growing neural gas 
GRG2 - generalized reduced gradient 2 
GRNN - general regression neural network 
k-NN - k-nearest neighbor 
LDA - linear discriminant analysis 
LM - Levenberg-Marquardt 
LS-SVM - least square support vector machine 
LVQ - learning vector quantization 
ME - mixture of experts 
MEA - multimodal evolutionary algorithm 
MFNNCA - modified feed forward neural network con-
structive algorithm 
MKS - multiple knot spline 
MLP - multi-layer perceptron 
MLPNN - multi-layer perceptron neural network 
MLNN - multilayer neural networks 
MME - modified mixture of experts 
NFIS - neuro-fuzzy inference system 
NG - neural gas 
NHANES - National Health and Nutrition Examination 
Survey 
PC - principal components 
PCA - principal component analysis 
PID - Pima Indian diabetes dataset 
PNN - probabilistic neural network 
RBF - radial basis function 
SOM - self-organizing map 
SSVM - smooth support vector machines 
SVM - support vector machine 
UCI - University of California, Irvine 



 

254  The Review of DIABETIC STUDIES Shankaracharya, Odedra, et al. 
  Vol. 7 ⋅ No. 4 ⋅ 2010 

 

Rev Diabet Stud (2010) 7:252-262  Copyright © by Lab & Life Press/SBDR 

of interest. Kazemnejad et al. used the Tehran 
Lipid and Glucose Study dataset which consists of 
variables like age, body mass index, waist-to-hip 
ratio, gender, history of hyperlipidemia, and his-
tory of hypertension [11]. In another study con-
ducted by Dey et al. on data of 530 patients from 
Sikkim Manipal Institute of Medical Sciences, risk 
factors such as random blood sugar test results, 
fasting blood sugar test results, post plasma blood 

sugar tests, age, sex, and occupation were taken 
into account [12]. 

The third National Health and Nutrition Ex-
amination Survey (NHANES III, http://www. 
cdc.gov/diabetes/) dataset resulted from a survey 
conducted on a US population. The eighteen vari-
ables identified as important for diabetes risk pre-
diction include body mass index, height, weight, 
waist circumference, waist-to-hip ratio, age, sex, 

Table 1. Artificial intelligence approaches for early diabetes detection 
 

 

Algorithm 

 

Dataset 

 

Accuracy 
(%) 

 

Specificity 
(%) 

 

Sensitivity 
(%) 

 

Reference 

 

MFNNCA 
 

PID  
 

80.07  
 

84.38  
 

74.00 
 

Kamaruzzaman et al. [51]  
 

GRG2 
 

PID 
 

81.25 
 

- 
 

- 
 

Shanker et al. [15] 
 

ANFIS 
 

PID 
 

98.14 
 

98.58 
 

96.97 
 

Ubeyli [52] 
 

GRNN 
 

PID  
 

80.21 
 

- 
 

- 
 

Kayaer, Yildirim [38] 
 

MLP 
 

PID  
 

77.08 
 

- 
 

- 
 

Kayaer, Yildirim [38] 
 

RBF 
 

PID  
 

68.23 
 

- 
 

- 
 

Kayaer, Yildirim [38] 
 

ARTMAP-IC 
 

PID  
 

81.00 
 

- 
 

- 
 

Carpenter, Markuzon [47] 
 

MEA 
 

PID  
 

80.07 
 

- 
 

- 
 

Stoean et al. [53] 
 

ESOM 
 

PID  
 

78.40 
 

- 
 

- 
 

Deng, Kasabov [23] 
 

GNG 
 

PID  
 

74.60 
 

- 
 

- 
 

Deng, Kasabov [23] 
 

GCS 
 

PID  
 

73.80 
 

- 
 

- 
 

Deng, Kasabov [23] 
 

k-NN 
 

PID  
 

77.00 
 

- 
 

- 
 

Kordos et al. [16] 
 

k-NN 
 

PID  
 

71.90 
 

- 
 

- 
 

Ster, Dobnikar [17] 
 

CART 
 

PID  
 

72.80 
 

- 
 

- 
 

Ster, Dobnikar [17] 
 

MLP 
 

PID  
 

75.20 
 

- 
 

- 
 

Ster, Dobnikar [17] 
 

LVQ 
 

PID  
 

75.80 
 

- 
 

- 
 

Ster, Dobnikar [17] 
 

LDA 
 

PID  
 

77.50 
 

- 
 

- 
 

Ster, Dobnikar [17] 
 

CART-DB 
 

PID  
 

74.40 
 

- 
 

- 
 

Shang, Breiman [54] 
 

SVM 
 

Questionnaire 
 

94.00 
 

94.00 
 

93.00 
 

Barakat et al. [25] 
 

SSVM 
 

PID  
 

76.73 
 

- 
 

- 
 

Purnami et al. [27] 
 

MKS-SSVM 
 

PID  
 

93.20 
 

- 
 

- 
 

Purnami et al. [27] 
 

GDA and LS-SVM 
 

PID  
 

78.21 
 

- 
 

- 
 

Polat et al. [44] 
 

PCA-ANFIS 
 

PID  
 

89.47 
 

- 
 

- 
 

Polat, Gunes [55] 
 

LDA-ANFIS 
 

PID  
 

84.61 
 

85.18 
 

83.33 
 

Dogantekin et al. [44] 
 

Naive Bayes 
 

PID  
 

74.50 
 

- 
 

- 
 

Friedman [56] 
 

Semi-naive Bayes 
 

PID  
 

76.00 
 

- 
 

- 
 

Friedman [56] 
 

C4.5 
 

PID  
 

76.00 
 

- 
 

- 
 

Friedman [56] 
 

MLPNN 
 

PID  
 

91.53 
 

91.19 
 

92.42 
 

Ubeyli [49] 
 

ME 
 

PID  
 

97.93 
 

98.01 
 

97.73 
 

Ubeyli [49] 
 

MME 
 

PID  
 

99.17 
 

99.43 
 

98.48 
 

Ubeyli [49] 
 

Legend: PID: Pima Indian dataset. MFNNCA: modified feed forward neural network constructive algorithm. GRG2: genera-
lized reduced gradient 2. ANFIS: adaptive neuro-fuzzy inference system. GRNN: general regression neural network. MLP: 
multi-layer perceptron. RBF: radial basis function. ARTMAP-IC: adaptive resonance theory mapping instance counting. 
MEA: multimodal evolutionary algorithm. ESOM: evolving self-organizing maps. GNG: growing neural gas. GCS: growing 
cell structure. k-NN: k-nearest-neighbor. CART: classification and regression trees. LVQ: learning vector quantization. LDA: 
linear discriminant analysis. CART-DB: classification and regression trees distribution-based. SVM: support vector machine. 
SSVM: smooth support vector machine. MKS-SSVM: multiple knot spline smooth support vector machine. GDA: general-
ized discriminant analysis. LS-SVM: least square support vector machine. PCA-ANFIS: principal component analysis and 
adaptive neuro-fuzzy inference system. LDA-ANFIS: linear discriminant analysis and adaptive network based fuzzy inference 
system. C4.5: sample class 4.5 algorithm. MLPNN: multi-layer perceptron neural network. ME: mixture of experts. MME: 
modified mixture of experts. 
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race/ethnicity, taking 
blood pressure medica-
tion, taking cholesterol 
medication, gestational 
diabetes, high blood 
pressure, high choles-
terol, history of diabe-
tes (any blood rela-
tive), history of diabe-
tes (parent or sibling), 
history of diabetes 
(parent), history of 
diabetes (sibling), and 
exercise [13]. 

Data analysis 
through logistic 
regression 

Logistic regression 
can be applied when 
the data consist of a 
binary response and a 
set of explanatory 
variables [14]. At first, 
the maximum likeli-
hood estimates for the 
parameters of the lo-
gistic regression model 
are estimated using an 
iteratively reweighted 
least squares algo-
rithm. Then, it is pos-
sible to calculate the 
predicted probability of 
an individual having 
diabetes by using the 
following logistic func-
tion: 

 

( )nnxxxe ββββθ +++++
= ...- 221101

1
 

 
Here X is a vector of variables and β is the re-

gression coefficient estimated by using maximum 
likelihood methods. Shanker applied logistic re-
gression on eight variables in PID and obtained a 
significant accuracy of 79.17% [15]. Statistically 
least significant (at 0.05 level) variables were de-
leted sequentially in the training sample. Logistic 
regression with the remaining four statistically 
significant parameters, e.g. number of times preg-
nant, glucose tolerance test, body mass index, and 

diabetes pedigree function, resulted in an overall 
classification accuracy of 80.21%. Heikes et al. 
have developed a diabetes risk calculator tool 
based on logistic regression function to identify 
people at high risk of diabetes [13]. It was built 
upon NHANES III dataset with a sensitivity of 
75%. 

Clustering techniques 

Most quality prediction models are based on 
clustering techniques that make use of k-means, 
mixture-of-Gaussians, self-organizing map (SOM) 
and neural gas (NG) for diagnosis. According to 

Table 2. Advantages and disadvantages of algorithms commonly used in diabetes prediction 
 

 

Algorithm 

 

Advatages 

 

Disadvantages 
 

Back propagation 
 

Better error minimization 
 

Slow convergence rate 
 

LM 
 

Fast convergence rate 
 

Memorization effect on over-
training 

 

SVM 
 

Guaranteed global minimum 
 

No specific rule to choose a kernel 
that will give better classification 

 

ANFIS 
 

Fast convergence rate 
 

Low interpretability of learned in-
formation, computationally expen-
sive 

 

RBF 
 

Uses small numbers of locally 
tuned units and is adaptive in na-
ture 

 

Sensitive to dimensionality of data 

 

ARTMAP-IC 
 

Fast convergence rate 
 

Tends to be conservative which 
reduces sensitivity 

 

SOM 
 

Little computational and memory 
requirements 

 

Topology mismatch leads to poor 
classification 

 

ESOM 
 

Shorter learning process than SOM 
 

Poor adaptability to input data 
 

GNG 
 

Can adaptively determine the num-
ber of connections 

 

Poor response to changing inputs 

 

k-NN 
 

Good choice when there is no prior 
knowledge of data distribution 

 

Requires rigorous tuning to opti-
mally fit the real world data 

 

LVQ 
 

Little computational and memory 
requirements 

 

Less accurate with high dimen-
sional data 

 

LDA 
 

Works best when class has Gaus-
sian density 

 

Less accurate with small sample 
size 

 

ME 
 

Requires only small number of 
connections in neural network 

 

Learns only static input-output 
mappings (i.e. no feedback) 

 

MME 
 

Requires only small number of 
connections in neural network. 
Faster than ME 

 

Learns only static input-output 
mappings 

 

Legend: SVM: support vector machine. ANFIS: adaptive neuro-fuzzy inference system. RBF: radial 
basis function. ARTMAP-IC: adaptive resonance theory mapping instance counting. SOM: self-
organizing maps. ESOM: evolving self-organizing maps. GNG: growing neural gas. k-NN: k-
nearest-neighbor. LVQ: learning vector quantization. LDA: linear discriminant analysis. ME: mix-
ture of experts. MME: modified mixture of experts. 
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the k-nearest neighbor (k-NN) algorithm, a new 
input pattern x is assigned to the class voted by 
the majority of its k-nearest training patterns [16]. 
The weight change in k-NN is given by: 

 

( )
( ) ( )=

==∆
otherwise ,             0

 if ,- XijWX
xfW

j
j

γ
 

 
where γ is the learning rate and i(x) is the win-

ning node. While the accuracy of k-NN on diabetes 
detection problem ranges between 71-78% [16, 17], 
a more sensitive performance with accuracy of 
92.38% was achieved with a hybrid model of k-NN 
and C4.5 algorithms [18, 19]. 

SOM is a sheet-like artificial neural network 
(ANN). Cells of this ANN become specifically 
tuned to input patterns [20]. In order to overcome 
the topology mismatches that occur with the origi-
nal SOM algorithm, and to achieve an optimal use 
of the neurons, the geometry of the lattice has to 
match with the data manifold. For this purpose, 
several so-called growing (incremental) SOM algo-
rithms have been developed. The growing neural 
gas (GNG) algorithms start with two randomly 
placed, connected neurons [21]. After a fixed num-
ber of time steps, the neuron i with the largest ac-
cumulated error is determined, and a new neuron 
inserted between i and one of its neighbors. It does 
not require predetermination of the neuron quan-
tity or topology of structure to be used. It starts 
with a minimal neuron structure that is incre-
mented during training until it reaches a maxi-
mum number limit for clusters defined by the 
user. 

The growing cell structure (GCS) algorithm 
assumes a fixed dimensionality for the lattice [22]. 
It is well suited for generating a dimensionality-
reducing mapping from the input space to the lat-
tice space. Deng and Kasabov applied GNG and 
GCS algorithms to the diabetes diagnosis problem, 
and reported accuracies of 74.6% and 73.8%, re-
spectively [23]. Both GNG and GCS need to calcu-
late local resources for prototypes, which intro-
duces extra computational effort and reduces their 
efficiency. Deng and Kasabov proposed the evolv-
ing self-organizing maps (ESOM) network struc-
ture, which is similar to that of GNG [21]. When 
applied to diabetes diagnosis, they obtained 78.4% 
classification accuracy using ESOM. 

Support vector machine (SVM) 
Support vector machine (SVM) operates by 

finding a linear hyperplane that separates the 

positive and negative examples with a maximum 
interclass distance [24]. We can define zi as an in-
dicator variable which specifies whether a data 
vector xi is in class diabetics or non-diabetics (e.g., 
zi = -1 if xi is in the diabetic class and zi = 1 if xi is 
in the non-diabetic class). The distance of a hyper-
plane w to a (transformed) data vector y is defined 
as | f (y)|/||w||. Together with the fact that the 
separating hyperplane ensures zi f(yi) ≥ 1 for all n 
data vectors i, we can express the condition on the 
margin m as: 

 
( )

nim
fzi ,...,1  where,   =≥
w

y
 

 
The goal of SVM training is to find the weight 

vector w that maximizes the margin m. Barakat et 
al. employed SVM to process the inputs, and ex-
tracted the rules using an electic approach [25]. 
This approach was then used to predict the diag-
nosis of diabetes using a questionnaire based on 
demographic, historic, and anthropometric meas-
ures. The authors achieved a prediction accuracy 
of 94%. 

A cascade learning system based on general-
ized discriminant analysis (GDA) and least square 
support vector machine (LS-SVM) has been pro-
posed for early diagnosis of Pima Indian diabetes 
disease [26]. The accuracy reported in this study 
was 78.21% with 10-fold cross-validation. Purnami 
et al. applied smooth support vector machines 
(SSVM) to the diabetes detection problem [27]. 
SSVM, developed by Lee et al., is an extension to 
SVM in which smoothing function is applied to 
solve the problem [28]. With SSVM, the investiga-
tors achieved a 76.73% accuracy. To improve effi-
ciency, they proposed a new multiple knot spline 
(MKS) smoothing function for SSVM. Replacing 
the default-plus function of SSVM by MKS, they 
enhanced the automated diagnosis performance of 
SSVM with an accuracy of 93.2%. 

Neural networks 

Multi-layer neural networks 

Multilayer neural networks (MLNN) are com-
posed of one or more hidden layers between input 
and output (Figure 1) [29]. In the training phase, 
the training data is fed through the input layer. 
The data is propagated from the hidden layer to 
the output layer (Figure 2), which is called for-
ward pass. During this phase, each node in the 
hidden layer gets input from all the input layer 
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nodes, which are then multiplied by the randomly 
assigned weights before summing up. Similarly, 
the output layer node receives inputs from all 
nodes of the hidden layer, which are then multi-
plied by the randomly assigned weights and 
summed up. This forms the output of the output 
layer. 

The input to each hidden layer is calculated 
by: 

 

 valueinput *∑= iwy  

 
where wi is the weight for neuron i. The output 

of the hidden layer is calculated by using an acti-
vation function. The activation function acts as a 
squashing function, such that the output of a neu-
ron in a neural network is between certain values 
(usually 0 and 1 for sigmoid, or -1 and 1 for hyper-
bolic tangent). Common activation functions used 
in diabetes diagnosis are the sigmoid (a) and hy-
perbolic tangent (b) function: 

 

( ) ( )
xx

xx

x ee

ee
xf

e
xf -

-

-
-

        b)
1

1
  a)

+
=

+
=  

 
with sigmoid range = [0,1], and hyperbolic 

range = [1,-1]. Error rates are calculated as fol-
lows: 

 

( ) ( )[ ] ( )[ ]xfxfxf  -  valuetarget*-1* Error =  

Back-propagation neural networks 

The back-propagation neural network (BPNN) 
algorithm is widely recognized as a powerful tool 
for training of the MLNN. In this algorithm, er-
rors are back-propagated to the hidden layers, 
weights are reassigned, and the process continues 
until the error rate is a minimum. The new 
weights are calculated based on the following 
equation: 

 

)( *error  *   weight (new) Weight xfη+=  

 
where η is the learning rate. However, since it 

applies the steepest descent method to update the 
weights, it suffers from a slow convergence rate, 
and often yields suboptimal solutions [30, 31]. 
Jaafar et al. used the back propagation neural 
network algorithm for diagnosing diabetes [32]. 
The inputs to the system were glucose tolerance 
test, diastolic blood pressure, triceps skin fold 
thickness, serum insulin, body mass index, diabe-
tes pedigree function, number of times pregnant, 
and age. BPNN was used to predict the glucose 
level [33], and also to train and test its perform-
ance using diabetes patients [12]. 

Although the BPNN algorithm is widely used, 
one major drawback is that it requires a complete 
set of input data. However, most diabetes datasets 
are often incomplete in the one respect or another. 
Back propagation algorithm cannot interpret the 
missing values (if any) which may prevent the 
identification of factors leading to rare outputs. To 
overcome this problem, Jayalakshmi and Santha-
kumaran proposed a new approach to deal with 
the missing values [34]. They achieved an accu-
racy of 99.9% by replacing the missing values with 
its mean, and then normalizing the data with a 
principal component analysis (PCA) technique 
[35]. PCA is an extraction method aimed at de-
scribing the data variance by constructing a set of 
new orthogonal features called principal compo-

nents (PCs). The PCs are a lin-
ear combination of the data 
variables that are mutually or-
thogonal. Every new PC de-
scribes a part of the data vari-
ance not explained by compo-
nents used previously. Due to 
this fact, a few first PCs are 
usually enough to represent 
the data variance well. 

It was reported that the 
Levenberg-Marquardt (LM) al-

Activation
function∑wiInput Output

 
Figure 1. Architecture of a single neuron. 

 
 

Input
(parameter

values)
Output

 
 
Figure 2. Multi-layer neural network with 3 neuron layers. 
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gorithm [36] provides generally faster convergence 
and better estimation results than other training 
algorithms [37]. However, this method can cause a 
memorization effect when overtraining occurs. If a 
neural network starts to memorize the training 
set, its generalization starts to decrease, and its 
performance may not be improved for untrained 
test sets. Kayaer and Yildirim used the LM algo-
rithm on a Pima Indian dataset, and achieved an 
accuracy of 77.08% [38], which was lower than 
other algorithms. Temurtas et al. trained the neu-
ral network optimally with a probabilistic neural 
network (PNN) along with a LM algorithm [39, 
40]. They achieved an 82.37% accuracy with this 
approach. 

Radial basis function (RBF) 

In neural networks, radial basis functions 
(RBFs) are used as a replacement for the sigmoi-
dal hidden layer transfer function in multi-layer 
perceptrons (MLP) [41]. The only parameters ad-
justed in the learning process are the linear map-
ping from the hidden layer to the output layer. 
Hence, RBF networks have the advantage of not 
suffering from local minima. 

RBF shows good performance in regression 
applications where the input space dimension is 
relatively small. However, in prediction problems 
like diabetes diagnosis, only 68.23% efficiency has 
been reported, which is far less than other algo-
rithms. RBF networks have the disadvantage of 
requiring good coverage of the input space by ra-
dial basis functions. Determination of RBF centers 
is heavily dependent on the distribution of the in-
put data without reference to the prediction task. 

General regression neural network (GRNN) 

The general regression neural network 
(GRNN) is related to the radial basis function 
network and is based on a standard statistical 
technique called Kernel regression [42]. It ap-
proximates any arbitrary function between input 
and output vectors, and draws the function esti-
mate directly from the training data. It does not 
require an iterative training procedure, as in 
MLP. For an input estimator ‘x’, corresponding to 
diabetes risk factor variables, GRNN produces an 
output estimator ‘y’ which minimizes the estima-
tion error. GRNN works on following formula: 
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where E[y|x] is the expected value of output y, 
given the input vector x, and f(x, y) the joint prob-
ability density function of x and y. 

GRNNs produce a real-valued prediction be-
tween 0 and 1. A cut-off value decides the criteria 
to identify positive prediction. The best result 
achieved by GRNN on PID is 80.21% using 0.5 as 
cut-off value for the decision [38]. 

Neuro-fuzzy inference systems (NFIS) 

A neuro-fuzzy network is a fuzzy inference 
system in an artificial neural network [43]. De-
pending on the fuzzy inference system (FIS) type, 
there are several layers that simulate the proc-
esses involved in a fuzzy inference like fuzzifica-
tion, inference, aggregation, and defuzzification. 
Embedding a FIS in the general structure of an 
artificial neural network (ANN) has the benefit of 
using ANN training methods to find the parame-
ters of a fuzzy system. Linear discriminant analy-
sis (LDA) is used to separate the two types of fea-
ture variables in a given dataset [44]. Dogantekin 
et al. used LDA along with artificial neuro FIS 
(ANFIS) for the detection of diabetes [45]. In this 
method, LDA is used to separate feature variables 
between healthy and diabetes data. In the second 
phase, both the healthy and diabetes features ob-
tained in the first phase are given to inputs of the 
ANFIS classifier. They achieved an 84.61% accu-
racy with this approach. 

Smith et al. used the PID data set to evaluate 
the perceptron-like adaptive learning routine 
(ADAP), and achieved a prediction accuracy of 
76% [46]. The performance of fuzzy adaptive reso-
nance theory mapping (ARTMAP) on the same da-
tabase was 66% [47]. ARTMAP is a supervised 
learning algorithm for input binary vectors. How-
ever, the ARTMAP algorithm required fewer rules 
and was comparatively faster. Carpenter and 
Markuzon have presented an instance counting 
algorithm (ARTMAP-IC) and obtained an 81% ac-
curacy against the test set [47]. 

Expert systems 

In real world problems like diabetes detection, 
a simple classifier is too weak for accurate predic-
tion. The use of expert systems and different arti-
ficial intelligence techniques for classification sys-
tems in medical diagnosis is increasing gradually. 
Mixture of experts and modified mixture of ex-
perts have been successfully implemented to the 
problem of diabetes diagnosis prediction. 
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Mixture of experts 

The new supervised learning algorithm called 
mixture of experts (ME) was proposed by Jacobs et 
al. [48]. This algorithm divides a learning task 
into appropriate subtasks, each of which can be 
solved by simple expert network. The global out-
put of the ME system is derived as a convex com-
bination of the outputs from a set of N experts, in 
which the overall predictive performance of the 
system is generally superior to any of the individ-
ual experts. 

ME architecture is composed of several expert 
networks and a gating network (Figure 3). The 
gating network produces a scalar output from a 
vector input X. The gating network operates on a 
generalized linear 
function where the 
output for ith input 
variable is given by: 

 

( )
∑
=

= n

k

i

k

i

e

e
vxg

1

,
ξ

ξ
 

 
where ξi = Vi

T x, 
and Vi is the weight 
vector. Each expert 
network produces an 
output vector for an 
input vector based on 
the following general-
ized linear equation: 
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where Wi is a weight matrix. The final output 

of ME is the sum of multiplications of the outputs 
from gating and expert networks: 
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Ubeyli presented an approach to test the per-

formance of ME on PID with a classification accu-
racy of 97.93% [49], which was better than conven-
tional MLNN. Moreover, the computational time 
required for classification using ME was compara-
tively small. 

Modified mixture of experts (MME) 

Ubeyli [49] employed a new, fast, and effective 
modified mixture of experts (MME) approach pro-
posed by Chen [50] to further improve the classifi-
cation accuracy of ME. 

The MME architecture is composed of an as-
sembly of N expert networks and a gate-bank 
(Figure 4). For k different features, expert net-
works are divided into k groups, each comprising 
of N expert networks. Similarly, the gate-bank is 
composed of k gating networks. The resultant out-
put of the gate-bank is a convex weighted sum of 
outputs produced by all the gating networks. Fi-
nally, the overall output of MME is obtained by 
linear combination of outputs of all N expert net-
works weighted by the output of the gate-bank. 
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Figure 3. General architecture of mixture of experts. 
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Figure 4. General architecture of modified mixture of experts. 
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Ubeyli applied the MME algorithm to the dia-
betes diagnosis problem and achieved an accuracy 
of 99.17% [49]. Apart from outperforming all other 
algorithms, the computational time required for 
classification was very small. 

Conclusions 
Despite of the rapid development of theories 

for computational intelligence, application to dia-
betes diagnosis remains a challenge. This is due to 
specific problems of data use. These problems 
arise when statistical models of data are unknown 
or time-dependent, or when the parameters of the 
learning system need to be updated incrementally, 
while only a partial glimpse of incoming data is 
available. Based on the promising outcomes of 
studies applying computational algorithms to the 
problem of diabetes diagnosis, it is clear that a 
more sophisticated risk score could be developed. 
This would significantly decrease healthcare costs 
via early prediction and diagnosis of type 2 diabe-
tes. 

Some algorithms work better on the diabetes 
diagnosis problem than others. It will be impor-
tant to compare outcomes further to find the most 
reliable algorithm for clinical application. Neural 
network methodology has outperformed classical 
statistical methods in cases where input variables 
are interrelated. Because clinical measurements 
are usually derived from multiple interrelated sys-
tems, it is evident that neural networks might be 
more accurate than classical methods in multi-
variate analysis of clinical data. 

Trained models of diabetes risk factors should 
be incorporated into easy-to-use software solutions 
such that medical practitioners, who are not ex-
perts in artificial intelligence and computational 
techniques, may apply them easily. For this pur-
pose, graphical user interface-enabled tools need 
to be developed by which medical practitioners can 
simply enter health profiles of their patients and 
receive an instant diabetes prediction with an ac-
ceptable degree of confidence. If the ANN-based 
prediction approach shows improved medical di-
agnosis, then it may become more widely accepted 
as a means to assist patient care in more hospitals 
and clinics. 

Though the PID dataset provides a well vali-
dated data for predicting diabetes diagnosis, it is 
possible that models trained on such a dataset 
may not perform equally well on profiles of pa-
tients from other ethnic group. Therefore, it is rec-
ommended that models of choice must be trained 
on a dataset that closely represents patient pro-
files of medical practitioners within specific geo-
graphic regions. 
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