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B Abstract

BACKGROUND: Diabetes mellitus is a systemic disorder
associated with inflammation and oxidative stress which
may target many organs such as the kidney, retina, and the
vascular system. The pathophysiology, mechanisms, and
consequences of diabetes on these organs have been stud-
ied widely. However, no work has been done on the concept
of the lung as a target organ for diabetes and its implications
for lung diseases. AIM: In this review, we aimed to investi-
gate the effects of diabetes and hypoglycemic agent on lung
diseases, including asthma, chronic obstructive pulmonary
disease (COPD), idiopathic pulmonary fibrosis, pulmonary
hypertension, and lung cancer. We also reviewed the poten-
tial mechanisms by which these effects may affect lung dis-
ease patients. RESULTS: Our results suggest that diabetes
can affect the severity and clinical course of several lung

diseases. CONCLUSIONS: Although the diabetes-lung as-
sociation is epidemiologically and clinically well-established,
especially in asthma, the underlying mechanism and patho-
physiology are not been fully understood. Several mecha-
nisms have been suggested, mainly associated with the pro-
inflammatory and proliferative properties of diabetes, but
also in relation to micro- and macrovascular effects of diabe-
tes on the pulmonary vasculature. Also, hypoglycemic drugs
may influence lung diseases in different ways. For example,
metformin was considered a potential therapeutic agent in
lung diseases, while insulin was shown to exacerbate lung
diseases; this suggests that their effects extend beyond their
hypoglycemic properties.

Keywords: diabetes - asthma - chronic obstructive pulmo-
nary disease - COPD - idiopathic pulmonary fibrosis - pul-
monary hypertension - lung cancer - hypoglycemic drugs

1. Introduction

% iabetes mellitus is a systemic disorder char-
racterized by a chronic hyperglycemic state
sy that is associated with inflammation and
oxidative stress. This leads to micro- and
macrovascular damage to many organs, especially
the kidney, retina, and cardiovascular system [1-
4]. The clinical basis and molecular mechanisms
associated with the diabetic micro- and macrovas-
cular damage to these organs have been investi-
gated widely. However, there is a lack of evidence
and research regarding the lung as a target for
diabetic damage. This is because the clinical sig-
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nificance of such damage is unknown, mainly due
to the extensive physiological reserve of the lung.

The lung has a complicated alveolar-capillary
network which may be targeted by diabetic mi-
crovascular damage, suggesting its involvement in
diabetes. Diabetic patients frequently report respi-
ratory symptoms [5] and are at increased risk of
several pulmonary diseases [6].

Hyperglycemia has been shown to lead to inter-
stitial fibrosis [7] and alveolar capillary microan-
giopathy [8]; it is associated with both restrictive
and obstructive lung function impairment, includ-
ing reduction in forced expiratory volume in 1 sec-
ond (FEV1), forced vital capacity (FVC), lung dif-
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fusing capacity (DLco) [9-10], and lung elastic re-
coil [11]. It has also been shown to cause mucus
overproduction in the airway, contributing to mor-
bidity and mortality in many lung diseases.

The molecular basis for the diabetes-lung asso-
ciation has yet to be fully investigated and under-
stood. However, several molecular mechanisms
have been suggested; they involve mainly pro-
inflammatory pathways and vascular inflamma-
tion. One such mechanism is the receptor for ad-
vanced glycation end-products (RAGE) which is
expressed in the lung and promotes vascular in-
flammation in diabetic patients [13]. Another is
interleukin 6, a biomarker of inflammation and
metabolic dysfunction, which has been suggested
as a severity predictor in lung diseases [14]. Inter-
estingly, little evidence suggests a beneficial role of
hypoglycemic agents on lung function and inflam-
mation [15].

In this review, we aim to discuss the effects of
diabetes and hypoglycemic agents on lung diseases
such as asthma, chronic obstructive pulmonary
disease (COPD), idiopathic pulmonary fibrosis
(IPF), pulmonary hypertension (PH), and lung
cancer, and we review the potential mechanisms
by which they may affect lung disease patients.

2. Asthma and diabetes

2.1 Background

Asthma is a heterogeneous disease mainly
characterized by airway hyperresponsiveness,
which leads to bronchoconstriction and chronic in-
flammation. This causes proliferation and ex-
tracellular matrix deposition, eventually leading to
the destruction of the airway wall structure and
airway remodeling. Asthma manifests mainly by
two phenotypes, distinguished by their inflamma-
tory responses [16]:

1. Th2-predominant inflammation, typically
atopic, which leads to early-onset asthma
that responds well to steroids.

2. Adult-onset asthma that typically occurs in
non-atopic patients with Thl-predominance,
which is more closely related to metabolic
and inflammatory processes such as diabetes
[17].

Table 1 provides an overview of lung diseases
in diabetic patients.

2.2 Epidemiology

Earlier studies reported an inverse relationship
between atopy and diabetes mellitus [18]. Type 1

Rev Diabet Stud (2019) 15:1-15

Abbreviations:

ABCA1 adenosine triphosphate-binding cassette,
subfamily A, member 1

ADPN adiponectin

COPD chronic obstructive pulmonary disease

CRP C-reactive protein

DLco lung diffusing capacity

EMT epithelial to mesenchymal transition

eNOS endothelial nitric oxide synthase

FEV1 forced expiratory volume in 1 second

FVC forced vital capacity

GERD gastroesophageal reflux disease
GLP-1 glucagon-like peptide 1 agonists
GOLD Global Initiative for Chronic Obstructive

Lung Disease
HR hazard ration

HRCT high-resolution computed tomography

ILGF-1 insulin-like growth factor 1

IL-6 interleukin 6

IPF idiopathic pulmonary fibrosis

MCP-1 monocyte chemoattractant protein

MMP-9 matrix metalloprotinase 9

NADPH nicotinamide adenine dinucleotide phos-
phate

NF-xB nuclear factor kappa-light-chain-enhancer of

activated B cells
NO nitric oxide

NOD non-obese diabetic

PDGF platelet-derived growth factor

PH pulmonary hypertension

PPARy peroxisome proliferator-activated receptor
gamma

RAGE receptor for advanced glycation end-products

RV right ventricular

SGLT2 sodium-glucose cotransporter 2

SV stroke volume

TGF-B1 transforming growth factor beta 1

TNF tumor necrosis factor

UIP usual interstitial pneumonia

diabetes was associated with a lower incidence of
asthma, which was due to the anti-inflammatory
properties of insulin [19]. In contrast, later studies
found high levels of asthma in countries with a
high level of type 1 diabetes [20].

The association between type 2 diabetes and
asthma has been investigated in more detail. Type
2 diabetes has been shown to cause airway hyper-
responsiveness in humans [21], with an associa-
tion between insulin resistance and increased risk
of asthma-like symptoms [22]. The risk of asthma
in diabetic patients is over twice that of non-
diabetics (hazard ratio (HR) of 2.2) [6]. A higher
prevalence of asthma has been found in hospital-
ized patients with type 2 diabetes, independent of
other comorbid conditions [23]. In one study, it was
shown that asthma symptoms preceded the diag-
nosis of diabetes by a few years, regardless of glu-
cocorticoid treatment [24]. Likewise, uncontrolled
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Table 1. Lung diseases in diabetic patients

Lung disease

Epidemiology

Clinical presentation

Proposed mecha-
nisms

Molecular basis

Asthma » High prevalence * More severe asthma
with a 2.2 risk [6, [27].
20]. » Higher exacerbation rate
[28].
» Higher number of emer-
gency department visits
[29].
» Higher sputum secretion
[12, 30].
* Increased long-term
mortality [31].
COPD « Slightly more * More severe phenotype
prevalent than in (GOLD 3-4).
the general popula- * Worse outcome, includ-
tion, [44]. ing lung function [50],
 Inconsistent epi- hospitalization, and mor-
demiologic data. tality [48].
IPF » Higher prevalence. » UIP pattern more com-
* Variable epidemi- mon.
ologic data [61, 62]. » Higher incidences of
cardiovascular diseases
and malignancies [60,
63].
Pulmonary ¢ Higher incidence of More severe symptoms

hypertension

diabetes in PH
[66].

» Higher prevalence
of idiopathic and
venous PH [69].

[70].

Worse hemodynamic pa-
rameters including RV
SV [72].

Reduced survival in dia-
betes and PH patients
(HR of 1.7) [73]

Lung cancer

» Conflicting evi-
dence on risk [83,
86, 86].

Poor glycemic control.
Decreased lung cancer
survival [93].

Higher risk for radiation
pneumonitis.

More invasive metastatic
lung cancer and local re-
currence [93].

Chronic airway in-
flammation [34].
Airway hyper respon-
siveness [24, 35, 36].
Sputum overproduc-
tion [30, 42].

Smoking-related co-
morbidities [49].
Obesity: reduced
oxidative capacity
and hypoxia [51].
Decreased thoracic
and septum compli-
ance.

Systemic inflamma-
tion [53-55].

Shared risk factors:
age, tobacco use [62].
GERD [64, 65].

Accelerated RV fail-
ure [74].

Collagen production
[75- 77].

RV ischemia [78].
Increased endothelial
dysfunction in pul-
monary vessels [79,
80].

Acceleration of tumor
metastasis and pro-
gression [96].
Increased cancer cell
proliferation

RAGE signaling pathway [13,
41, 42].

Th2 predominance [38].
Increased IL-6 [39, 40].
Induction of MCP-1 [41] and
MMP-9 [30, 42].

IL-6, TNF alpha [53].
CRP [54].
Circulating ADPN [53-55].

Unknown.

PDGF activation [75] .
Upregulation of microRNA
miR-29 family [76].
Endothelin-1 induction and
NADPH oxidase-derived su-
peroxide production [77].
Inhibition of eNOS [79, 80].
Upregulation of ILGF-1 [81].
Decrease of PPARy activity
[82].

Oxidative stress induction
[96].

Enhancement of EMT [93].
TGF-131/P13K/Akt signaling
pathway [97].

Fibroblast growth factor 2
[98].

WNT/B-catenin signaling
pathway [99].

Legend: ADPN - adiponectin, COPD - chronic obstructive pulmonary disease, CRP — C-reactive protein, EMT - epithelial to mesenchymal
transition, eNOS - endothelial nitric oxide synthase, GERD - gastro-esophageal reflux disease, IL-6 - interleukin 6, ILGF-1 - insulin-like growth
factor, IPF - idiopathic pulmonary fibrosis, MCP-1 - monocyte chemoattractant protein, MMP-9 - matrix metalloprotinase 9, PDGF - platelet-
derived growth factor, PH - pulmonary hypertension, PPARy - peroxisome proliferator-activated receptor gamma, RAGE - receptor for advan-

ced glycation end-products, RV - right ventricular, SV - stroke volume, TNF - tumor necrosis factor, UIP - usual interstitial pneumonia.
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diabetes has been associated with a higher risk of
asthma, and poor glycemic control has been re-
lated to increased asthma risk [25]. In contrast, a
large prospective study found no significant statis-
tical relationship among women with asthma [26],
suggesting that the diabetes-asthma association is
still not sufficiently well established.

2.3 Clinical presentation

Diabetes in asthma patients is an important
comorbidity, causing more severe asthma [27] with
a higher exacerbations rate [28] and more frequent
emergency department visits [29]. Diabetes was
also shown to induce sputum hypersecretion [12,
30]. Moreover, diabetes in the context of asthma
exacerbation was shown to impact long-term mor-
tality [31].

2.4 Mechanisms

Chronic inflammation and pro-inflammatory
cytokines may emerge in the pathogenesis of both
diabetes mellitus [32] and asthma [33]. It has been
shown that diabetes is a pro-inflammatory state
associated with airway inflammation [34]. Studies
on type 2 diabetes have shown that it causes air-
way hyperresponsiveness in human airway smooth
muscle cells in vitro [35], in diabetic animal mod-
els [36], and in humans [25]. Therefore, the most
investigated pathway in the pathogenesis of the
diabetes-asthma association is chronic inflamma-
tion such as RAGE.

RAGE signaling has been shown to be highly
expressed in the lung and to induce chronic airway
and vascular inflammation [13, 37]. RAGE has a
regulatory role in T-cell proliferation and differen-
tiation of both Thl and Th2 cells [38]. Diabetes-
prone non-obese diabetic (NOD) mice have been
shown to give rise to enhanced Th2-mediated re-
sponses and contribute to a Th2-predominant
asthma phenotype. Increased systemic interleukin
6 as an inflammatory and metabolic dysfunction
biomarker in diabetes has been associated with
more severe asthma [39, 40]. In this context,
monocyte chemoattratant protein (MCP) 1, which
recruits monocytes to inflammation sites, has been
shown to play a significant role in diabetic patients
with asthma via airway remodeling and predicts a
poorer prognosis [41].

Matrix metallopreinase (MMP) 9 mediates spu-
tum overproduction secondary to airway epithelial
barrier dysfunction caused by hyperglycemia, es-
pecially during exacerbation, and cause airway in-
flammation in airway epithelial cells [30, 42].

Rev Diabet Stud (2019) 15:1-15

2.5 Summary

The diabetes-asthma association is well-
established epidemiologically and clinically. Diabe-
tes is a risk factor for more severe and complicated
asthma. The main pathogenesis of this association
is inflammation and pro-inflammatory cytokines.
However, the pathogenesis has yet to be fully un-
derstood and more research is necessary to estab-
lish a strong biological basis.

3. Chronic obstructive pulmonary
disease (COPD) and diabetes

3.1 Introduction

COPD is a preventable and treatable disease
characterized by persistent respiratory symptoms
and airflow limitation due to airway and/or alveo-
lar abnormalities, which are often secondary to
significant exposure to noxious particles or gases
[43]. It is currently the fourth leading cause of
death worldwide.

It has been increasingly recognized that the
presence of common factors in COPD and in other
chronic extra-pulmonary diseases, such as diabe-
tes mellitus, together with the frequent coexis-
tence of these conditions in the same adult indi-
vidual, supports the hypothesis of common proc-
esses sharing their pathogeneses within the same
patient [44].

3.2 Epidemiology

Metabolic syndrome has been recognized as one
of the most relevant clinical comorbidities associ-
ated with COPD patients [45]. However, the link
between COPD and diabetes is much less clear.
Diabetes is more prevalent in COPD than in the
general population. Prevalence estimates of diabe-
tes among COPD patients range between 10.1-
23.0% [46, 47].

3.3 Clinical presentation

The risk of diabetes in COPD patients has been
found to be higher in more severe phenotypes
(level 3-4 according to the Global Initiative for
Chronic Obstructive Lung Disease (GOLD) guide-
line). This risk was independent of BMI, smoking,
and other confounding factors. Moreover, the pres-
ence of diabetes among those with COPD has been
shown to be associated with worse outcomes, such
as mortality and hospitalization [48].

Copyright © by Lab & Life Press/SBDR
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3.4 Mechanisms

The mechanisms by which diabetes influences
lung function have not yet been fully determined.
The correlation between COPD and diabetes may
depend on several mutual risk factors and physio-
logical alterations.

COPD patients are primarily former or active
smokers. Smoking may lead to concomitant co-
morbidity, but it is increasingly evident that pa-
tients with COPD also have a high burden of co-
morbidity independent of smoking [49]. In the
large COPD Gene cohort, diabetes subjects with a
history of smoking had worse lung function even if
they had no established diagnosis of COPD [50].

Recently, there has been increasing interest in
the relationship between obesity and COPD, al-
though the nature of this association remains un-
known. It has been proposed that reduced oxida-
tive capacity and systemic hypoxia may play a role
in the pathogenesis of COPD in obese patients
[51]. The potential interaction between impaired
adipose tissue function, systemic inflammation,
and COPD may provide insight into the patho-
genesis and reversibility of the systemic pathology
in the disease. The effects of obesity on respiratory
function depend on the mass and anatomical dis-
tribution of the excessive adipose tissue in the tho-
rax and abdomen [52]. Thus, another potential ex-
planation is that increased abdominal obesity di-
rectly affects thoracic and diaphragm (septum?)
compliance, which impairs lung function.

COPD is associated with a chronic systemic in-
flammatory condition. Insulin resistance has been
found to be related to interleukin 6 (IL-6) and tu-
mor necrosis factor alpha soluble receptor in non-
hypoxemic COPD patients [53]. Moreover, elevated
serum levels of C-reactive protein (CRP) have also
been associated with impaired pulmonary func-
tion [54]. Increased visceral fat has been identified
as the main factor increasing CRP concentration
[55]. Another mechanism associated with COPD is
circulating adiponectin (ADPN), which has been
inversely associated with disease severity in pa-
tients with COPD. Studies assessing the relation-
ship between ADPN and lung function in subjects
from the general population have shown diverging
results. It is noteworthy that there was no associa-
tion between ADPN and lung function after ad-
justment for covariates related to adiposity [56].

3.5 Summary

The association between COPD and diabetes
has not been fully established epidemiologically
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and clinically. However, it is strongly suggested
that continuously elevated levels of inflammatory
mediators, reflecting the enhanced inflammatory
state seen in COPD, may contribute to the devel-
opment of diabetes. Whilst a converse relation is
not suggested; the presence of diabetes alone is not
considered a risk factor for COPD, and has not
been found to contribute to its development in
studies regarding COPD pathogenesis.

4. Idiopathic pulmonary fibrosis (IPF)
and diabetes

4.1 Introduction

IPF is defined as a specific form of chronic, pro-
gressive, fibrosing interstitial pneumonia of un-
known cause, occurring primarily in older adults.
It is characterized by progressive worsening of
dyspnea and lung function and is associated with a
poor prognosis [57]. No significant extra-
pulmonary manifestation has been recognized so
far. Thus, it is assumed to be limited to the lung.

4.2 Epidemiology

The incidence of IPF is estimated to be between
4 to 11 cases per 100,000 persons per year, and is
more common in males. It increases with older
age, typically occurring in the sixth and seventh
decade. The majority of patients have a history of
cigarette smoking [58, 59]. Although considered a
single-organ disease (affecting only the lung),
many studies suggest that there is an association
between IPF and diabetes [60, 61]. In a nationwide
Korean survey performed in the years 2003-2007,
which retrospectively analyzed 1,685 patients us-
ing the interstitial lung disease (ILD) registry,
17.8% of the patients with IPF also had diabetes
[60].

Case-control analyses performed in Japan,
Mexico, and the U.K. estimated the prevalence of
type 2 diabetes among individuals with IPF to be
10-33%, which was significantly higher than that
of matched control populations [62].

4.3 Clinical presentation

Many comorbid conditions are known to occur
in IPF, including coronary artery disease, pulmo-
nary hypertension, gastroesophageal reflux, and
diabetes [63]. It remains unclear whether the
presence of diabetes influences survival in patients
with IPF. However, IPF patients with diabetes are
more likely to have the usual interstitial pneumo-
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nia (UIP) patterns on high-resolution computed
tomography (HRCT), including reticular and hon-
eycomb patterns, than are those without diabetes.
Furthermore, significantly higher incidences of
hypertension, cardiovascular diseases, and other
malignancies (except lung cancer) have been found
in IPF patients with diabetes than in IPF patients
without diabetes [60].

4.4 Mechanisms

Since the incidence of IPF increases with age, it
is possible that age and lifestyle-related diseases,
including diabetes, may be a risk factor affecting
either the initiation or progression of IPF. In a
case-controlled study, the adjusted odds ratios
for cigarette smoking and diabetes were 5.40 (95%
Cl: 2.30-12.66) and 4.06 (95% CI: 1.80-9.15) [62].
Another potential link between IPF and diabetes is
based on the higher prevalence of gastroesophag-
eal reflux disease (GERD) in both conditions. Pa-
tients  with diabetesare at greater risk
of GERD than those without diabetes. [64]. Sev-
eral studies suggest that GERD is a risk factor for
IPF because of its presumed association with mi-
croaspiration. Abnormal GERD is common in pa-
tients with IPF [65].

4.5 Summary

It has yet to be defined whether diabetes is as-
sociated with IPF. However, mounting evidence
suggests at least an epidemiologic connection with
these conditions and a trend towards a more se-
vere disease state.

5. Pulmonary hypertension (PH) and
diabetes

5.1 Introduction

PH is an abnormally elevated pressure in the
pulmonary vasculature that may cause right heart
failure and death. The micro- and macrovascular
damage caused by diabetes may affect the pulmo-
nary vasculature, suggesting that diabetes may
play a role in the development and exacerbation of
pulmonary hypertension. It has been shown that
the incidence of diabetes in PH patients is higher
than in the general population, suggesting a con-
nection between the two diseases [66]. However,
the clinical significance is unknown, mostly be-
cause of the extensive reserve within the pulmo-
nary capillary bed.

Rev Diabet Stud (2019) 15:1-15

5.2 Epidemiology

It has not yet been established whether pulmo-
nary hypertension is the consequence of diabetes
or its cause. It has been shown that PH patients
have more glucose intolerance [67], and that dia-
betic patients were more likely to have idiopathic
pulmonary hypertension [68] (24% compared to
10%), and to have venous rather than arterial
pulmonary hypertension [69].

5.3 Clinical presentation

Symptoms of PH patients and physical per-
formance measured by a 6-minute walk test were
worse in diabetic than in non-diabetic patients
[70]. In patients with COPD and diabetes, PH was
more severe than in patients with COPD only [71].
Moreover, hemodynamic parameters such as right
atrial pressure and mean pulmonary capillary
wedge pressure were higher in diabetic patients
than in non-diabetics, with a trend towards lower
response to nitric oxide (NO) in diabetic patients
[69]. It was shown that right ventricular stroke
volume, which is associated with PH prognosis and
survival, was reduced in patients with diabetes
and PH [72]. Consequently, survival among PH
patients with diabetes was lower than that of pa-
tients without diabetes (hazard ratio of 1.7) [73]. It
was also obvious that well-controlled diabetes
(HbAlc less than 5.7) in PH patients was associ-
ated with greater survival [74].

5.4 Mechanisms

Although mechanisms that contribute to the
development of pulmonary hypertension have been
widely studied, the effect of diabetes on pulmonary
vasculature is less well understood. It has been
shown that diabetes influences PH by causing ac-
celerated right heart failure [74]. Diabetes has
been shown to accelerate fibrosis of the right heart
via platelet-derived growth factor (PDGF) activa-
tion, which causes an increase in the transforming
growth factor beta 1 (TGF-g1) gene, thus modulat-
ing both human mesangial cells and matrix [75].
Another mechanism is via upregulation of the mi-
croRNA miR-29 family, which causes collagen pro-
duction by cardiac fibroblasts [76]. Moreover, hy-
perglycemia has been shown to induce endothelin-
1 in the right ventricle, and to cause fibrosis [77].

It has also been suggested that right ventricle
ischemia plays a role in PH patients with diabetes,
which is mostly due to the role of diabetes in the
general promotion of ischemia [78]. However, there
have been no specific studies on the role of diabe-
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tes in ischemia of pulmonary vasculature. Animal
studies suggest that diabetes may have a direct ef-
fect on pulmonary vasculature. It has been found
that pulmonary arteries from diabetic rats are less
responsive to vasodilatation, because of increased
endothelial dysfunction via enhanced nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase-
derived superoxide production and inhibition of
endothelial nitric oxide synthase (eNOS) [79, 80].

Diabetes has also been shown to increase arte-
rial smooth muscle cell proliferation via upregula-
tion of insulin-like growth factor 1 (ILGF-1) [81].
Also, the anti-proliferative role of peroxisome pro-
liferator-activated receptor gamma (PPARy) was
decreased in diabetes, while its effect was en-
hanced with the PPARy activator rosiglitazone
[82].

5.5 Summary

Diabetes and pulmonary hypertension are
strongly associated. Diabetic microvascular and
macrovascular injuries may affect pulmonary vas-
culature by increasing its susceptibility to the de-
velopment and progression of pulmonary hyper-
tension, and may play a role in patient prognosis
and survival.

6. Lung cancer and diabetes

6.1 Introduction

Recent studies suggest an association between
diabetes and lung cancer, providing epidemiologi-
cal and clinical support for the hypothesis that
diabetes is a risk factor for lung cancer [90]. Dia-
betes may influence lung cancer progression and
outcome, and may serve as a poor prognostic factor
for lung cancer [83].

6.2 Epidemiology

Type 1 diabetes is regarded to be associated
with an increased risk of lung cancer [84], despite
several conflicting retrospective studies on lung
cancer prognosis among diabetic patients [85, 86].
On the basis of two large cohorts from Shanghai, it
was reported that the risk of lung cancer was ob-
served in both men and women, with a HR of 0.87
and 0.92, respectively [87]. However, a recent large
prospective study provided evidence that pre-
existing diabetes is associated with poor survival
among women with cancer [88], and it is consid-
ered a negative prognostic factor in lung cancer
[89].
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6.3 Clinical presentation

Proper glycemic control for lung cancer patients
is required to induce antineoplastic effects and in-
crease survival (HZ of 0.62) [90]. Diabetic patients
have been shown to be more vulnerable to radia-
tion [91]. Diabetes has also been shown to be a risk
factor for radiation pneumonitis in lung cancer pa-
tients who receive radiotherapy [92]. A multi-
center study found that diabetic patients with lung
cancer may have a more invasive metastatic lung
cancer with greater local recurrence [93].

On the contrary, several studies found that dia-
betes does not impact overall survival in lung can-
cer [94], and may even be associated with longer
survival rates [85]. Furthermore, another study
found that diabetes may play a protective role
against lung metastasis [95], suggesting that the
role of diabetes in lung cancer needs further clari-
fication.

6.4 Mechanisms

Diabetes may influence cancer progression and
prognosis via several mechanisms. It has been
shown to accelerate tumor metastasis and tumor
progression in a lung cancer animal model via hy-
perglycemia-induced oxidative stress. This effect is
reversible when removing systemic hydrogen per-
oxide [96]. Diabetes has been shown to increase
cancer invasiveness via enhancement of epithelial
to mesenchymal transition (EMT), which plays a
key role in local tumor recurrence and metastasis
in non-small cell lung cancer [93], and via an in-
creased metastasis-associated protein expression
secondary to oxidative stress and increased
upregulation of TGF-181/PI3K/Akt signaling
pathway [97].

Consequently, it has been shown that hypergly-
cemia enhances cell proliferation via fibroblast
growth factor 2, and that hyperglycemia may alter
endothelial cell function and promote basement
membrane changes. It may also promote cancer
cell proliferation [98] via metabolic remodeling, re-
sulting in WNT/B-catenin signaling pathway en-
hancement, thus promoting proliferation, survival,
and senescence bypass [99].

6.5 Summary

Epidemiological and clinical data support an
association between diabetes and lung cancer. The
pre-existence of diabetes in lung cancer is assumed
to aggravate lung cancer, although this remains
unclear.
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7. Lung diseases and hypoglycemic
agents

7.1 Introduction

The diabetes-lung association hypothesis has
been studied in combination with the effect of hy-
poglycemic drugs on the lungs (Table 2). Interest-
ingly, hypoglycemic drugs seem to have a role be-
yond their contribution to diabetes control; they
also act as a modulator of airway glucose homeo-
stasis, leading to lung disease exacerbation or pre-
vention [100].

7.2 Metformin

The most common oral antidiabetic drug and
most investigated in lung diseases is metformin,
mainly because of its antidiabetic, antioxidant,
and anti-inflammatory properties.

The role of metformin in lung cancer is con-
stantly under debate. In a meta-analysis of the as-
sociation between hypoglycemic agents and lung
cancer prognosis, metformin was the only drug
shown to improve survival outcomes [101], espe-
cially in non-small cell lung cancer [102]. It has
also been shown to have anticancer effects beyond
its role as a drug for diabetes [103], such as a pro-
tective agent for both radiation-induced pulmonary
injury [104] and chemotherapy pneumonitis [105].
In contrast, a recent large cohort study concluded
that, unlike breast and liver cancer, there is no
evidence of an antitumor efficacy of metformin on
lung cancer [106]. Thus, the protective role of met-
formin on lung cancer is still unknown.

In lung infections, metformin has been shown
to promote macrophage bactericidal activity and
improve survival [107, 108]; and it may serve both
as a means of protection against pulmonary tuber-
culosis and as a therapy for improving the effec-
tiveness of anti-tuberculous drugs [109]. In idio-
pathic pulmonary fibrosis, metformin attenuated
lung fibrosis via inhibition of fibrosis marker ex-
pression, and it has been proposed as an anti-
fibrotic modality [110, 111]. Metformin use in
asthmatic patients has been associated with a sig-
nificant reduction in asthma exacerbations and
hospitalization [112]. In COPD, metformin seems
to have a protective role on lung inflammatory re-
sponse during the development of emphysema
[113]. However, it had no effect on COPD exacer-
bations [15].

To conclude, metformin has a beneficial role in
various lung diseases independent of its antidia-
betic role, and it may be considered as a potential
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therapeutic agent for clinical use in lung disease.
However, its role in lung cancer prevention re-
mains unknown.

7.3 Insulin

In contrast to metformin, insulin is known to
have oncogenic activity, and it is associated with
non-small cell lung cancer development [114]. In-
sulin-like growth factor receptor 1 (IGF-1) is asso-
ciated with lung cancer development and metasta-
sis [115] and an acquired resistance to chemother-
apy [116].

Insulin has been shown to modify mast cell
phenotype and increase its activity in vitro [117],
along with increasing hyperresponsiveness, bron-
choconstriction [118, 119], and airway inflamma-
tion [19]. Insulin modulates T-cell differentiation
by promoting a shift towards Th2 type response,
which is the main disease pathway in asthma
[120]. A recent study in a Taiwanese cohort dem-
onstrated that insulin may increase the risk of
asthma [121]. Although very little is known re-
garding the association between insulin and IPF,
it has been suggested that insulin growth factor
binding proteins may be a key factor responsible
for IPF initiation [122].

In conclusion, we assume that insulin affects
the lung by causing airway inflammation, exacer-
bating lung disease, and playing a role in lung
cancer development.

7.4 PPAR-y agonists

Several studies suggest that PPAR-y agonists
reduce airway inflammation [123] and decrease
mucus secretion [124]. It has been shown that
pioglitazone diminishes alveolar and interstitial
neutrophil influx and reduces lung inflammation
and injury both in vitro [125] and in animal mod-
els and that it attenuates lung ischemia reperfu-
sion injury via inhibition of pro-inflammatory cy-
tokines [126]. Pioglitazone has been shown to have
a beneficial effect on fibrotic processes of the lung,
suggesting that it may serve as an anti-fibrotic
agent in IPF and in bleomycin-induced lung injury
[127, 128].

Rosiglitazone, another PPAR-y agonist, demon-
strated beneficial effects on lung function and air-
way inflammation in a rat model of asthma [129].
However, this effect was not achieved in human
studies in vivo [130].

Regarding lung cancer, PPAR-y agonists have
demonstrated anti-tumor and anti-proliferative
properties [131, 132] and might offer therapeutic
effects in lung cancer [133].

Copyright © by Lab & Life Press/SBDR
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Table 2. Hypoglycemic agents and lung diseases

Hypoglycemic agent Effect on lung

Metformin

Improved survival in lung cancer [101].

Protective against radiation- and chemotherapy-induced lung injury [104, 105].
Improved survival in lung infections [107, 108].

Lung fibrosis attenuation [110, 111].

Reduced risk of exacerbations in asthma exacerbation, but not in COPD [15, 112].

Insulin

Higher prevalence of lung cancer and metastasis [114, 115].

Higher resistance of lung cancer to chemotherapy [116].
Higher risk of asthma and airway hyperresponsiveness [120].

PPARy agonists

Reduced airway inflammation and mucus production [123, 124].

Beneficial effect on lung fibrosis in IPF and in bleomycin-induced lung injury [127, 128].
Anti-tumor and anti-proliferative effect [131, 132].

DDP-4 inhibitors

Mediated allergic airway inflammation [134].

Sulfonylurea and sulfonylurea-like
drugs

Glibenclamide has a protective role in asthma development [129].
A protective role against eosinophil-associated diseases [140].

GLP-1 agonists

Decreased COPD exacerbations and reduced mortality [143].

Reduced airway inflammation [144, 145].

SGLT-2 inhibitors

May induce pulmonary artery smooth muscle cell relaxation [148].

Legend: COPD - chronic obstructive pulmonary disease, DPP-4 - dipeptidyl peptidase 4, GLP-1 - glucagon-like peptide 1, IPF - idiopathic pul-
monary fibrosis, PPARy - peroxisome proliferator-activated receptor gamma, SGLT2 - sodium-glucose cotransporter 2.

7.5 DPP-4 inhibitors

These drugs were shown in vitro and in an
animal model to mediate allergic airway inflam-
mation and regulate common immunological
pathways in asthma via CD26 [134]. However, no
association between DPP-4 use and asthma control
was found [135].

7.6 Sulfonylurea and sulfonylurea-like drugs

Although a large-scale study showed that insu-
lin secretagogues increased the risk of overall can-
cer [136], a recent meta-analysis showed that sul-
fonylurea use was not associated with risk of lung
cancer [137]. In another study, sulfonylurea use
was proposed in combination with chemotherapy
for resistant lung cancer cells [138]. Glibenclamide
has been shown to play an important protective
role in asthma development via airway muscle re-
laxation in mice [139], and glyburide inhibited cy-
tokine-mediated eosinophil survival and superox-
ide production, suggesting that it could be used to
treat eosinophil-associated disease, such as
asthma [140].

7.7 Glucagon-like peptide 1 agonists (GLP-1)

The GLP-1 receptor is found in human lung tis-
sue [141], suggesting that the lung may be a target
for GLP-1 agonists. GLP-1 augments surfactant
production in rats [142] and was shown to be a po-
tential therapy in the treatment of obstructive
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pulmonary disease by decreasing severity of acute
exacerbations and reducing mortality in an animal
model of obstructive lung disease [143]. The
mechanism is still unknown, but it has been sug-
gested that GLP-1 may have anti-inflammatory
effects via downregulation of inflammatory cyto-
kines, such as TNF« and NF-xB [144, 145], and via
airway smooth muscle cell proliferation and mi-
gration mediated by adenosine  triphos-
phate-binding cassette, subfamily A, member 1
(ABCA1) [146]. However, the effect of GLP-1 ago-
nists on human lungs has not yet been investi-
gated, and clinical data are lacking.

7.8 Inhibitors of sodium-glucose cotransporter
2 (SGLT2)

These are a new class of oral anti-diabetic
drugs with increasing evidence of a beneficial role
in cardiovascular diseases [147]. Little is known
about their effects on the lung. A recent in vitro
study suggested that SGLT2 may induce human
pulmonary artery smooth muscle cell relaxation in
an NO-dependent manner [148]. However, their
role in pulmonary vasculature and lung diseases
has yet to be investigated.

8. Conclusion

Diabetes mellitus is one of the most thoroughly
investigated systemic diseases worldwide, and is
considered a part of the metabolic syndrome epi-
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demic. Although it has been shown to affect almost
every organ in the body, the lung is one of the most
neglected target organs of diabetes, presumably
because its clinical relevance is undetermined.
Thus, the diabetes-lung association is considered a
newly investigated concept. In fact, most pul-
monology literature does not address diabetes as
an influencing factor for lung diseases.

Emerging evidence suggests that diabetes and
the widely used hypoglycemic drugs may affect the
pathogenesis, development, and progression of
several lung diseases and their prognosis and
clinical outcome, suggesting that diabetes should
be considered as a relevant factor in the clinical

approach to lung disease patients. The pro-
inflammatory, proliferative, and oxidative proper-
ties of hyperglycemia have been shown to have an
important role in affecting pulmonary vasculature,
airways, and lung parenchyma.

The evidence reviewed in this article supports
further investigation in this field. More studies are
needed to evaluate and reinforce the biological and
clinical associations between diabetes and lung
disease, and thus more research is justified. After
all, why should the lung be a neglected organ
within this systemic and epidemic disease?
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