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 ■ Abstract 
Metformin is well-known as an anti-diabetic drug, but it 
seems to possess anti-cancerous properties as well. Adeno-
sine monophosphate-activated protein kinase (AMPK) is a 
highly conserved regulator of the cellular response to the 
presence of low energy in all eukaryotic cells. It is consid-
ered a key sensor of the balance of cellular ATP and AMP 
concentrations. LKB1 serine/threonine kinase is a divergent 
yet evolutionarily well-conserved kinase, biochemically suf-
ficient to activate AMPK in vitro and genetically required for 
AMPK activation. Because of this potent connection to 
AMPK, LKB1 may act as a central regulator of metabolism 
in vivo. Once activated, AMP kinase phosphorylates the 
transcriptional activator TorC2, thereby blocking its nuclear 
translocation and inhibiting the expression of genes involved 
in gluconeogenesis. Data suggest that LKB1/AMPK signal-
ing plays a role in protection from apoptosis, specifically in 
response to agents that increase the cellular AMP/ATP ra-
tio. Active AMPK signaling offers a protective effect by pro-
viding the cell with time to reverse the aberrantly high ratio 
of AMP/ATP. If unable to reverse this ratio, the cell will 
eventually undergo cell death. These observations offer the 
provocative suggestion of a potential therapeutic window in 
which LKB1-deficient tumor cells may be acutely sensitive to 

AMP analogues or sensitized to cell death by other stimuli 
when treated in combination with agents that increase the 
AMP/ATP ratio. LKB1 therefore is a classical tumor sup-
pressor. AMPK is a direct LKB1 substrate. A consequence 
of AMPK activation by LKB1 is the inhibition of the mam-
malian target of rapamycin (mTOR) C1 pathway. Met-
formin’s anti-cancerous properties have been demonstrated 
in various cancer cells in vitro, such as lung, pancreatic, co-
lon, ovarian, breast, prostate, renal cancer cells, melanoma, 
and even in acute lymphoblastic leukemia cells. To test met-
formin’s action in vivo, mice were implanted with trans-
formed mammary epithelial cells and treated with three cy-
cles of metformin and with the anthracycline doxorubicin. 
When combined with doxorubicin, metformin wiped out tu-
mors and prevented recurrence. Metformin alone had no 
effect, and doxorubicin as a single agent initially shrank tu-
mors, but they regrew later. Virtually no cancer stem cells 
were recovered immediately after treatment and the com-
plete response was sustained for nearly two months. Further 
studies are needed to assess the anti-cancerous potentials of 
metformin in vivo. This article reviews the current knowl-
edge on the actions of LKB1/AMPK and the effectiveness of 
metformin in cancer, specifically in diabetes patients. 
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Introduction 
 

 t is well-established that colorectal cancer in- 
 cidence is increased among patients with type 
 2 diabetes mellitus [1-4]. Certain types of can-

cers are more common in people with diabetes 
than in those without. Diabetes is also associated 
with reduced survival after cancer [5-8]. Therefore, 
it is important to address the topic of cancer and in 
diabetes in future research. 

Adenosine-monophosphate-activated 
protein kinase (AMPK) 

Adenosine monophosphate-activated protein 
kinase (AMPK) is a highly conserved regulator of 
the cellular response to low energy expressed in all 
eukaryotic cells. AMPK is activated when intracel-
lular adenosine triphosphate (ATP) concentrations 
decrease and AMP concentrations increase [9]. It 
is considered a key sensor for the balance of cellu-

R
ep

ri
nt

Th
e 

R
ev

ie
w

 o
fD

IA
B

E
T

IC
ST

U
D

IE
S

V
ol

 1
0 

  N
o 

4
20

13
   

   
  

 



 

Metformin and Cancer  The Review of DIABETIC STUDIES  229 
  Vol. 10 ⋅ No. 4 ⋅ 2013 
 

www.The-RDS.org  Rev Diabet Stud (2013) 10:228-235  

lar ATP and AMP concentrations. AMPK is acti-
vated by: 

 
1. Stimuli that induce stress including oxida-

tive damage, osmotic shock, hypoxia, and 
deprivation of glucose or other nutrients. 

2. Mitochondrial poisons. 
3. Physiological stimuli including exercise, 

muscle contraction, and hormones such as 
leptin and adiponectin [10]. 

 
In mammals, AMPK has a critical role in meta-

bolic processes, including glucose uptake and fatty 
acid oxidation in muscle, fatty acid synthesis and 
gluconeogenesis in the liver, and the regulation of 
food intake centrally at the hypothalamus level 
[11-13]. 

AMPK exists as a heterotrimer complex, com-
posed of the catalytic kinase α subunit and two as-
sociated regulatory subunits, β and γ [11]. Upon 
energy stress, AMP directly binds to tandem re-
peats of crystathionine-β synthase (CBS) domains 
in the AMPK γ subunit, causing a conformation 
change that exposes the activation loop in the α 
subunit, allowing it to be phosphorylated by an 
upstream kinase [10]. The sequence flanking the 
activation loop threonine (Thr172 in human 
AMPKα1) is conserved across species and its phos-
phorylation is absolutely required for AMPK acti-
vation. Phosphorylation of a single invariant 
threonine residue in the activation loop of the cata-
lytic subunit (Thr172 in human AMPKα1) has 
been shown to be required to activate all known 
AMPK homologues [12]. A number of laboratories 
have reported biochemical purification of a kinase 
activity, AMPK kinase (AMPKK), which is capable 
of phosphorylating Thr172 [14-17]. Calcium 
calmodulin-dependent protein kinase kinase 
(CAMKK) has been demonstrated to serve as a 
surrogate AMPKK in vitro, but not in vivo [18]. 

The LKB1 serine/threonine kinase is a diver-
gent yet evolutionarily well conserved kinase that 
most closely resembles CAMKK in its catalytic 
domain. Threonine kinase LKB1 is biochemically 
sufficient to activate AMPK in vitro and is geneti-
cally required for AMPK activation by energy 
stress in a number of mammalian cell lines [19-
20]. Because of this potent connection to AMPK, 
LKB1 may act as a central regulator of metabolism 
in vivo [21-26]. Once activated, AMP kinase phos-
phorylates the transcriptional activator TorC2, 
thereby blocking its nuclear translocation and in-
hibiting the expression of genes involved in glu-
coneogenesis (Figure 1) [23]. 

LKB1/AMPK and diabetes 
The ability of metformin to lower glucose and 

insulin levels by inhibiting the expression of genes 
involved in gluconeogenesis is a satisfactory ex-
planation of its therapeutic effect in diabetes [9]. 
Mice deficient in hepatic LKB1 develop hypergly-
cemia and are resistant to the glucose-lowering ef-
fects of metformin [21]. 

There is genetic and biochemical evidence that 
LKB1 is a critical regulator of AMPK in vivo. As 
such, LKB1 may play an unexpected role in multi-
ple organ systems that mediate the diverse effects 
of AMPK on mammalian physiology. Importantly, 
AMPK has been shown to be a critical mediator of 
glucose uptake in skeletal muscle in mice. The 
kinase activity of AMPK is stimulated by two ma-
jor anti-diabetic drugs, metformin and rosiglita-
zone [27-28]. Therefore, the identification of LKB1 
as a major activator of AMPK in vivo may offer po-
tential avenues to boost AMPK activity for the 
treatment of diabetes. 

LKB1/AMPK and apoptosis 

Data suggest that LKB1/AMPK signaling plays 
a role in protection from apoptosis, specifically in 
response to agents that increase the cellular 
AMP/ATP ratio. Active AMPK signaling induces a 
protective effect by providing the cell with time to 
reverse the aberrantly high ratio of AMP/ATP. If 
unable to reverse this ratio, the cell will eventually 
undergo cell death. These results offer the pro-
vocative suggestion of a potential therapeutic win-
dow in which LKB1-deficient tumor cells may be 
acutely sensitive to AMP analogues or sensitized 
to cell death by other stimuli when treated in com-
bination with agents that increase the AMP/ATP 
ratio. 

AMP kinase is activated by the product of the 
Peutz-Jegher tumor suppressor gene LKB1 [29]. 

Abbreviations: 
 

AMP - adenosine monophosphate 
AMPK - adenosine-monophosphate-activated protein 
kinase 
ATP - adenosine triphosphate 
CAMKK - calmodulin-dependent protein kinase kinase 
CBS - crystathionine-β synthase 
IGF-IR - insulin-like growth factor insulin receptor 
IR - insulin receptor 
LKB1 - liver kinase B1 (a threonine/serine kinase) 
MAPK - mitogen-activated protein kinase 
mTOR - mammalian target of rapamycin 
Thr172 - threonine 172 
TORC2 - target of rapamycin complex 2 
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Peutz-Jeghers syndrome patients develop numer-
ous benign tumors in the gastrointestinal tract 
and have a 20-fold increased risk of developing 
malignant tumors at other sites. Mutations in the 
LKB1 gene are also seen in some sporadic cancers, 
especially lung adenocarcinoma [30-31]. Therefore, 
LKB1 is a classical tumor suppressor [32]. AMPK 
is a direct LKB1 substrate. A consequence of 
AMPK activation by LKB1 is the inhibition of the 
mammalian target of rapamycin (mTOR) C1 
pathway through phosphorylation of tuberous 
sclerosis 2 or hamartin and raptor [33-34]. 

As mentioned above, loss of LKB1 function is a 
frequent finding in lung adenocarcinoma and 
squamous cell carcinomas [20]. Interestingly, the 
anti-diabetic drug rosiglitazone is known to stimu-

late AMPK signaling through alterations in the in-
tracellular AMP/ATP ratio, suggesting that rosigli-
tazone may be useful in the treatment of LKB1-
deficient tumors as well [28]. The observation that 
altered AMP/ATP ratios result in cell death in the 
absence of AMPK signaling indicates that other 
cellular proteins that are regulated by AMP may 
contribute to the cell death observed. 

LKB1 tumor suppression seems to be the major 
activating kinase for AMPK in the liver. As Shaw 
et al. suggested, minor roles for other kinases can-
not be ruled out, but under all the conditions they 
have examined, the loss of LKB1 was mirrored by 
the loss of AMPK phosphorylation [26]. 

mTOR, insulin, and LKB1 pathways represent 
a fundamental eukaryotic network governing cell 
growth in response to environmental nutrients; 
dysregulation of one of these pathways contributes 
to both diabetes and cancer [29-32]. 

Metformin and various cancer cells 
The involvement of a tumor suppressor path-

way as a target for metformin’s action in glucose 
homeostasis prompted studies of possible effects in 
tumor cells and animal cancer models. In vitro 
studies have shown that metformin inhibits the 
proliferation of colorectal cancer cells [33]. In vivo 
studies have demonstrated that metformin delays 
tumor onset in mouse models for p53 mutant colon 
cancer [34]. Another animal model of colon cancer 
has indicated that metformin inhibits colon carci-
noma growth stimulated by a high-energy diet 
[35]. Two animal models of colorectal aberrant 
crypt foci showed that metformin significantly 
suppresses colonic epithelial proliferation by inhib-
iting the mTOR pathway [36-39]. This pathway 
has recently been found to be involved in T cell 
acute lymphoblastic leukemia [40]. Indeed, met-
formin has been shown to have therapeutic effects 
in T cells of acute lymphoblastic leukemia in vitro 
[41]. 

Metformin exerts in vitro inhibition of the pro-
liferation of prostate, ovarian, and breast cancer 
cells [39]. This inhibitory effect is seen, however, 
at concentrations that are at least 10-fold higher 
than the peak plasma concentration attained with 
typical dosing in diabetics [42]. Even though most 
laboratory studies have been using doses that are 
much lower than the typical anti-diabetic dose of 
metformin used in vivo, there are emerging studies 
which show that even lower doses of metformin 
could have substantial anti-cancerous effects. For 
example, the proliferation of CD133+, but not 
CD24+CD44+ESA+ cells, which are considered pan-
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Figure 1. Action of metformin in diabetes. Metformin acti-
vates adenosine-monophosphate-activated protein kinase 
(AMPK), which phosphorylates the target of rapamycin 
complex 2 (TORC2), thereby blocking its nuclear transloca-
tion and transcription of the genes involved in gluconeo-
genesis. Liver kinase B1 (LKB1) is essential for the activation 
of AMPK. Positive AMPK signals prevent the mitogenic ac-
tivity of mammalian target of rapamycin (mTOR) C1 path-
way.  
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creatic cancer stem cells, was inhibited by low 
doses of metformin [43]. Recently, it has been 
shown that the conventional anti-diabetic concen-
trations of metformin caused death in cancer cells 
and were preferentially cytotoxic to cancer stem 
cells related to non-cancer stem cells [44]. Also, to 
demonstrate the action of potential anti-cancerous 
properties of metformin in vivo, mice with trans-
formed mammary epithelial cells were given three 
cycles of metformin and one cycle of doxorubicin, 
resulting in shrinking tumor cells and the preven-
tion of recurrence. Mouse xenograft models dem-
onstrate in vivo anti-tumor effects of metformin 
against pancreatic, prostate, and p53 mutant colon 
cancers [33, 45-47]. 

AMPK is critically linked to the phosphatidyl-
inositol-3 kinase/AKT/mTOR signaling pathway, a 
vital cellular signaling cascade that is essential for 
cell growth in response to mitogenic stimuli or 
pathways activated by growth factor receptors 
[48]. AMPK activation directly inhibits phosphory-
lation and subsequent activation of the mTORC1 
complex and is controlled partly by the upstream 
kinase AKT, whose activation decreases the 
AMP:ATP ratio [35, 49-51]. AKT also directly in-
hibits the activation of AMPK by phosphorylation 
of AMPK at Ser 485/491 [52-53]. Renal cell carci-
noma is a highly aggressive genitourinary cancer 
for which the treatment options are limited [54]. 
This malignancy is characterized by over-
activation of this AKT/mTOR signaling pathway 
[55]. Extensive work over the last few years has 
demonstrated the effectiveness of targeting the 
mTOR pathway for the treatment of renal cell car-
cinoma [56]. Temsirolimus, a known mTOR path-
way inhibitor, has clinically significant activity in 
the treatment of renal cell carcinoma and is now 
an FDA-approved agent in the treatment of pa-
tients with renal cell carcinoma [57]. Studies have 
demonstrated that addition of metformin exerted 
suppressive effects on the tumorogenicity of renal 
cancer cells in vitro. 

It has been suggested that inhibitory effects on 
the LKB1/AMPK axis in melanoma may constitute 
an important mechanism of tumorigenesis [58]. 
Studies using both melanoma cell lines harboring 
this BRAF mutation and melanoma cell lines 
without this mutation suggest that AMPL plays a 
role in the control of malignant melanoma cell 
growth. Taken together, the above-mentioned 
studies provide evidence for potent inhibitory ef-
fects of AMPK on malignant melanoma cell growth 
and survival and raise the potential of AMPK ma-
nipulation as a novel future approach for the 
treatment of malignant melanoma [59]. 

Metformin and breast cancer 

The discovery that metformin selectively kills 
cancer stem cells adds further interest and may 
explain its antineoplastic properties. Hirsch et al. 
genetically manipulated human breast epithelial 
cells to enrich for stem cells and tested these to-
gether with three distinct breast tumor cell lines 
[60]. Using flow cytometry to track the effects of 
metformin, researchers found that the drug is se-
lectively toxic to cancer stem cells. To test met-
formin’s action in vivo, mice were implanted with 
transformed mammary epithelial cells and treated 
with three cycles of metformin and with the an-
thracycline doxorubicin. When combined with 
doxorubicin, metformin wiped out tumors and pre-
vented recurrence. Metformin alone had no effect 
and doxorubicin as a single agent initially shrank 
tumors but they regrew later. Virtually no cancer 
stem cells were recovered immediately after 
treatment and the complete response was sus-
tained for nearly two months [61]. Among patients 
with breast cancer, the metformin-treated sub-
group has been related with better outcomes than 
patients not treated with metformin [62]. 

Further studies will delineate whether the 
AMP kinase pathway is important in cancer stem 
cells, and whether the synergistic effect of met-
formin and anthracyclines is generalized to other 
types of cancer and to its combination with other 
drugs [63]. 

Metformin and colorectal cancer 

Type 2 diabetes has been associated with in-
creased incidence of colorectal cancer [64]. Re-
cently, a study has revealed a significant associa-
tion between highly intensive use of metformin 
and lower mortality from colorectal cancer in dia-
betics with stage I-III colorectal cancer compared 
with non-diabetics with stage I-III colorectal can-
cer [65]. Also, metformin use has been related with 
decreased incidence of colorectal adenomas in dia-
betic patients with previous colorectal cancer [66]. 
Overall survival has been found to be better 
among patients with colorectal cancer and type 2 
diabetes taking metformin as part of their anti-
diabetic medication compared with diabetic pa-
tients with colorectal cancer not taking metformin 
as part of their anti-diabetic regimen [67]. In Ko-
rean patients with colorectal cancer, the use of 
metformin has been associated with reduced risk 
of overall mortality, especially in patients with 
stage III colorectal cancer [68]. 
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Metformin, cancer prevention, and 
mortality 

As shown by Curie et al., diabetic patients with 
type 2 diabetes taking metformin had a decreased 
risk of cancer compared with patients taking met-
formin plus sulfonylurea and patients on insulin 
treatment [69]. Metformin has been related with 
lower incidence of cancer among type 2 diabetes 
patients [70]. Many studies support the notion 
that the use of metformin results in lower inci-
dence of cancer [71-75]. Lung, pancreatic, prostate, 
breast, ovarian, and hepatocellular cancer inci-
dence has been found to be lower among patients 
receiving metformin [76-82]. Moreover, the mortal-

ity from cancer was lower in diabetes patients tak-
ing metformin as part of their anti-diabetic medi-
cation compared with those not taking metformin 
[83-86]. However, studies showing favorable effects 
of metformin on cancer are not always corrobo-
rated by large clinical trials. Larger studies are 
expected to investigate the possible antineoplastic 
effects of metformin more thoroughly [87-89]. 

Conclusions 
Metformin exerts its anti-tumor effects mainly 

through the AMPK/LKB1/TORC1 signaling path-
way, thereby causing apoptosis in cancerous cells 
[14, 21-23]. Another possible mechanism is amelio-
ration of endogenous hyperinsulinemia by use of 
metformin therapy [90]. Insulin stimulates cellular 
proliferation, and multiple signaling pathways are 
activated after insulin receptors or insulin-like 
growth factor (IGF-I) receptors interact with their 
ligands [91-92]. 

Most cancer cells express insulin and IGF-I re-
ceptors. The A isoform of the insulin receptor is 
also commonly expressed, which may stimulate 
mitogenesis, even in cells deficient in IGF-I [93-
94]. Metformin therapy decreases the levels of cir-
culating insulin-like growth factors and insulin 
which, in turn, may reduce the risk of cancer 
(Figure 2). 

Other possible mechanisms underlying the po-
tential anti-tumor effect of metformin could be the 
antagonization of obesity and anti-inflammatory 
effects. Interleukin-6, plasminogen activator in-
hibitor-1, tumor necrosis factor-α, and monocyte 
chemoattractant are produced by adipose tissue 
and can enhance cancer cell proliferation, p-53 ac-
tivation, downregulation of cyclin D1, and killing 
of cancer stem cells [95-98]. Further studies inves-
tigating potential mechanisms of the anti-
cancerous properties of metformin are needed. 

If metformin effectively helps cancer patients, it 
will finally join drugs such as thalidomide, retinoic 
acid, and arsenic, which have unique mechanisms 
of action and were first used elsewhere in medi-
cine, but have also found their way into the field of 
anticancer drugs. 
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